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FOREWORD 

The Twenty-Ninth Conference on-the Design of Experiments in Army Research, 
Development and Testing was held October 19-21, 1983, at the Uniform 
Services University of Health Sciences (USUHS), Bethesda, Maryland. This 
was the second Army-wide conference to be held at this university. The 
first one, called the Twenty-Eighth Conference of Army Mathematicians, was 
held June 28-30, 1982. As a result of this June meeting, Dr. David Cruess, 
a faculty member of USUHS, offered the facilities of his university for the 
Twenty-Ninth Conference on the Design of Experiments. The members of the 
Army Mathematics Steering Committee (AMSC), sponsors of these conferences, 
were pleased to receive this invitation. They would like to take this 
occasion to thank Professor Cruess for serving as Local Chairperson and for 
his excellent hatiling of the many problems associated with a meeting of 
this size. A brief history of USUHS appeared in a booklet issued to the 
attendees of this conference. This interesting and informative booklet is 
reproduced at the end of this Foreword. 

Two days before the start of the Design Conference, a tutorial entitled, 
"Sequential Methods in Statistics," was held. Its speaker was Professor 
Michael Woodroofe of the University of Michigan at Ann Arbor, Michigan. 
The main purpose of this seminar was to develop, in Army scientists, an 
appreciation for and the necessary skills needed to handle some of the 
statistical methods for analyzing experimental data. 

Members of the Program Committee for this conference were pleased to obtain 
the services of the following invited speakers to talk on topics of current 
interest to Army personnel: 

Speaker and Affiliation Title of Address 

Dr. Marvin A. Schneiderman EPIDEMIOLOGY AND RISK ASSESSMENT: 
National Cancer Institute COURTS, CLOCKS AND CONFUSION 

Dr. William Sacco 
Washington Hospital Center 

INJURY SEVERITY SCORES AND 
APPLICATIONS TO MILITARY TRIAGE 

Professor Jerome Friedman 
Stanford Linear Accelerator 

Center 

INTERACTIVE COMPUTER DATA ANALYSIS 

Dr. Charles Brown 
National Cancer Institute 

HIGH TO LOW DOSE EXTRAPOLATION OF 
EXPERIMENTAL ANIMAL CARCINOGENESIS 
STUDIES 

* . . 
111 



A broad overview of the many research areas presented in the contributed 
papers can be ascertained from the titles of the various sessions: 

Special Session: Sequential Testing 
Technical Session 1: Statistical Theory 
Technical Session 2: Analysis of Longitudinal Data 
Technical Session 3: Simulation Techniques and Applications 
Technical Session 4: Test and Evaluation Techniques 
Technical Session 5: Application in Experimental Design 

In addition to the above mentioned sessions, there was a Clinical Session 
which offered an opportunity to each of three Army scientists to present 
unsolved statistical problems and receive suggestions and constructive 
comments from the experts. 

Professor Herbert A. David of the Department of Statistics, Iowa State 
University, was the recipient of the third Wilks Award for contributions to 
Statistical Methodologies. He received this award at the banquet held at 
the Officer's Club, Naval Medical Center, on October 19, 1983. This honor 
was bestowed on Dr. David for his many significant contributions to various 
fields of statistics, in particular to the areas of order statistics and 
competing risks, and also for his contributions to the Army. He has 
assisted many Army scientists with their statistical problems, served-as 
invited speaker at two Design conferences, and provided theoretical details 
for the soluti,on of a fuzing problem for the Ballistic Research Laboratory. 

The AMSC has requested that these Proceedings be published and distributed 
Army-wide so that the information it contains could assist Army scientists 
with some of their statistical problems. Committee members would like to 
thank the Program Committee for all it did in putting together this 
scientific conference. 

Program Committee 

Carl Bates Richard Moore 
Larry Crow James Schlesselman 
David Cruess Douglas Tang 
Walter Foster Malcolm Taylor 
Bernard Harris Jerry Thomas 
Robert Launer Langhorne Withers 

iv 



ADMINISTRATION 

Jay P. Sanford, M.D. 
Dean, School of Medicine 

Leonard W. Johnson, Jr., M.D. 
COL, USAF, MC 
Associate Dean 

Peter 1. Stavish, M.B.A., LTC, MSC, USA (Ret) 
Director of Admissions 
Registrar 

Joan F. Crotty, M.S.W. 
Assistant Director of .Qdmissions 

For more information about the Uniformed Ser- 
vices University write to: 

Admissions Office 
Uniformed Services University 
of the Health Sciences 
4301 Jones Uridge Road 
Bethesda, Maryland 20814 
Tel: (301) 295-3101 or Autovon 295-3101 

GPO : 1983 0 - 399-3uti 

V 



To prepare young men 
and women for careers 
as regular medical officers 
in the Uniformed Services 



GENERAL INFORMATION 

Created by public law in 1972, the USUHS was 
founded for the purpose of training young men and 
women for carters as health care professionals in 
the Uniformed Services. 

In 1976, the University’s School of Medicine 
admitted its first class of 32 freshman medical 
students. Sixty-eight medical students entered the 
Uniformed Services University of the Health 
Sciences (USUHS) in 1977; 108 in 1978; 124 in 1979, 
and the following year 130 students gained ad- 
mittance. In 1981 and 1982, 156 medical students 
were admitted and by the mid-1980’s, the School of 
Medicine projects a first-year class of 176 students, 
the planned enrollment capacity of the School. 

The charter class studied for one year in in- 
terim facililies at the Armed Forces lnslitutc Of 

Pathology on the grounds of the Walter Reed Army 
Medical Center. In August 1977, the School of 
Medicine commenced its preclinical teaching ac- 
tivities at the University’s new, permanent facilities 
on the grounds of the Naval Medical Command 
National Capital Region in suburban Bethesda, 
Maryland. Surrounded by master-planned communi- 
ties, parks, and open land, the Center is adjacent to 
Interslate 495, a modern freeway system that circles 
the greater Washington area, The school’s permanent 
campus occupies an area of more than one hundred 
acres. 

[-uur ct~n~lcctcd buildings tmlw up the per- 
manent c01~1~1lcx and were built at a total cost of ap- 
proximately $00 million. The facilities include staff 
and I~ully olliccs, Llassroc1ni5, sludenl mulli- 
disciplinary laboratories, a lounge and cafeteria, stu- 
dent study areas, departmental laboratories, and 
academic support units such as a learning resources 
center, an electron microscopy suite, and a vivar- 
ium. Instructional and study areas are equipped with 
closed-cicuil Ielevision. 

The preponderance of clinical instruction for 
students is provided at the three major military 
mcdicnl centers in the Washington, D.C. arca; 
Walter Reed Army Medical Center, Malcolm 

Grow USAF Medical Center, and the Nav,i 
Hospilal, Belhesda. Long recognized as , bcilli 
among the country’s finest facilities fo 
undergraduate and gradyate medical educaliol.1 
these centers have large outpatient populations 
have, collcctivcly, more than 2.000 (caching hcd> 
and offer residencies in all of the major specialties 
In addition, clinical experiences are scheduled lo 
students at Wilford Hall USAF Medical Center in SJ 
Antonio, Texas; Naval Regional Medical CCIIIUI 

Jacksonville, Florida; Eisenhower Army Medic; 
Center, Fort Gordon, Georgia; Naval Region; 
Medical Center, Charleston, South Carolina, at.lr 
Dewitt Army Medical Center, Fort Belvoir, Virginis 
The School operates in close association with othc 
military medical facilities throughout the countr 
and many other Federal health resources, such a 
the National Institutes of Health and Nation; 
Library of Medicine, to provide a I,ro;ld rallk;u c 
complementary preclinical and clinical experience 
for students. 

CURRICULUM 

The School of Medicine’s four-year progran’ 
which culminates in the award of Ihe doctor u 
medicine degree, is aimed at: (I] developin 
students into competent, compassionate milil.ar 
physicians; (2) creating and fostering a learnillr; c; 
vironmonl Il~al iilspircs invcsliEalivlf curiosity Lack 
the advancelnent of knowledge; a11c1 (3) proviclilll: 
setting for the inculcation and fui-therancti L 
mihtary medical professionalism. 

The first two years of the curriculum cons,i: 
predominately of preclinical instruction. The la: 
two are devoted to the clinical disciplines. The iI 
tegration between the clinical and basic sciences i 
progressive and proceeds with involvement in 1~: 
tient care activities early in the curriculum, startin 
with the first semester of the freshman year. Whil 
the overall program is designed to BCIUC,IL 
students to serve as providers of primary Iicall 
care, there is sufficient flexibility irl ttlc curriculum 
to accommodate differences in interest amc,rI 

-- . . . . , 
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students and also sufficient substance to enable 
graduates to pursue postgraduate activities such as 
research. Elective courses are offered in the 
clinical and research facilities of tljis country and 
also in areas of the world where diseases rarely 
seen in the United States are responsible for 00 pcr- 
cent of the morbidity and mortality. The cur- 
ric-..um also includes basic military orientation and 
concentration on unique aspects of military ’ 
medicine, 

service or a program of study sponsored by the 
Aimed Forces (including ROTC) must oblain a “l-et- 
tel of Approval to Apply” from their respective ser- 
vice as part of their application. Each mitilafy 
department has established regulations governing 
tllc procedures for initiating and proccssinl: rc’- 
quest5 for approval. tnasmuch as the entering 
students will be commissioned officers in the 
military services tlWV must, in addition to 
demonslrating the acarlumic qualilicslions for ltlu 
study of medicine, present evidence of a strong 

~GENERAL REQUIREblENTS .. commitment to serving the United Status as medical 
officers. 

Applicants must be citizens of the United 
Status and must mout the physical and personal 
qualifications for a commission in the Uniformed 
Services. An applicant should not be older than 20 
years of age as of 30 Junr? of the year that he/she 
plans to en\cr ~hc School of Mtidicinc. A few waivers 
have been granlcd, but such exceplions are rare. A 
baccalaurcatc dcgrec is requirccl in addition to one 
year each of college English, general chemistry, or- 
ganic chcmislrv, physics, general biology and mnlh- 
ernAtics. The New Medical College Admission Test 
(New MCAT) is also required of all applicants to the 
School of Medicine, Applicants must provide test 
scores that have been taken wilhin lhrcr years of 
desired matriculalion. The lest is given in [he fall and 
spring of each year. The spring testing may not be 
usctl for consiclcfation if an individual wants to gain 
admillance to thu first-year class beginning the same 
year,‘@.&, the spring, 1984 MCAT c:jnnot be used by 
c1(IIJliLi1111!, WINJ wish IO cnlcr Ihc SCIIC~OI of Medicine 
in July 1984, bul the spring or fall 1904 lest may be 
used by applicants who arc applying for the 1985 
first-year class. Informalion on rgjslralion for lhc 
MCAT is available from the American College Testing 
Program, Post Office Uox 414, Iowa City, iowa 
52243 (telephone 319-337-12701. 

Civilians and military pcrsonncl are eligible to 
apply. However, individuals who are in military 

The School of Medicine parlicipates in tllc 
American Medical College Application Service 
(AMCAS). Application forms should be requr!sted 
directly from AMCAS, 1776 Massachusetts Avenue. 
Northwest, Suite 301, Washington, D.C. 2003~ 
(telephone 202~82U-0600). The 5c/tool oT Medicine 
dots not dislribulc apl~lication /)acltcts. 

The School’s Committee on Admissions will 
review all AMCAS applications and will decide 011 
the basis of merit, taking into account both per. 
sonal and intellectual characteristics, whicll in- 
dividuals should advance to furttler staecs uf 
screening. Applicants shoutd not send transcripts, 
letters of rccommcnclation, or other nlaterials unlil 
specifically requested to do so by the Admissiorls 
Committee. The Admissions Office will schcdulti 
personal interviews far llwsr! canclidatcs that tlbc 
Committee considers to be finalists in the screcninl; 
process. The School of Medicine does not have my 
application fees; however, applicants arc rusponsi- 
bte for the AMCAS application fee and for incidcn- 
tnl expenses such as postago and cost of travel f01 
interview. tnterviews are currenlty held at both the 
School of Medicine snd rc&ionally in S;III Francisco, 
California. 
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Applications must be submitted directly to 
A.IKAS between 15 June and 1 November. AP- 
pllcants are advised to submit all materials, in- 
cluding transcripts, to AMCAS well in advance of 
the deadline, as applications that are not complete 
;md received by the 1 November deadline cannot 
be considered. 

First-Year students are admitted only in July of 
each year. There are no provisions for transfer 
students and all students must enter at the first- 
year level. 

GENERAL SELECTION 
FACTOR§ 

Each year the University receives many more 
applications than the School of Medicine has 
positions to offer. Hence, placement in the class is 
on a competitive basis, decided by action of the 
Admissions Committee and the Deal\, and granted 
only to the best qualified candidates in terms of 
demonstrated ability and potential for undertaking 
the study and practice of military medicine. The’ 
School of Medicine subscribes fully to the policy of 
equal educational opportunity. There are no 
quotas by race, sex, religion, marital status, 
national origin, socioeconomic background, or 
state of residence. There are no Congressional 
quotas or appokitments. 

Further, USUHS is commitled to removing 
barriers that have made it more difficult for 
minorities, women, and economically disad- 
vdntaged college graduates lo realize career goals in 
medicine and the military. To that end, the School of 
Mcdicinc has established a program called “AQUA” 
in ils admission office. AQUA stands for Accession of 
Qualified Und er represented - Applicants. Through 
AQUA, the School seeks to identify and encourage 
applicants from groups which arc under-represented 
in military medicine. 

l~liese categories include U.S. citizens who are 
women,. black Americans, American- In- 
dians/Alaskan natives, Asian or Pacific Islanders, 

Mexican Americans, Hispanics, and PUcrtO iiliCJllS. 

AQUA JISO ;tddrcsscs cullcgc ~)~-C-IIICX~ ;~nd Scic'IlcC 

majors who have demonstrated motivtation ~II~ou& 

ROTC program participation or prior active Or 

reserve duty in the uniformed services. 

For the 1902 freshman class 3,074 individuals 
applied. Al! new entrants had baccalaureate degrees, 
had taken the New MCAT and had been interviewed. 
The 156 matriculants had the following credentials: 
grade-point average, mean of 3.43; age at time 01 
application,. mean of 23.3; sex, 22 percent female; 
undergraduate major, 35 percent biology, with chcm- 
istry ranking second, and engineering (biomedical and 
mechanical), oceanography, nutrition, physics, busi- 
ness, psychology and physiology among the other 
disciplines represented; residence, 40.4 percent fron 
northeastern states, 37.8 percent from western states, 
15.4 percent from southern states, and 6.4 percen’ 
from central stales. 

M1LITARY OBLIGATI0N 
Upon entering the first-year class of the Schoo 

of Medicine, students are commissioned and servr 
on active duty reserve in the grade of Seconc 
Lieutenant in either the Army or Air Force, or Ensigr 
in the Navy or Public IHealth Service, receiving the 
appropriate pay and benefits of that grade. There art 
no tuition or fees for attending the School of Medi 
tine. Required books, equipment, and instrument 
are also furnished without charge. 

At graduation, upon the receipt of the docto 
of medicine.degree, students are promoted to thl 
rank of Captain in the Army or Air Force, or Lieuten 
ant in the Navy or Public Health Service 
Graduates are obligated to serve on active duty a 
medical officers for not less than seven years 
Periods of time spent in graduate medical educa 
tion are not creditable toward satisfying this seven 
year obligation. A student who is dropped from thf 
program, for either academic deficiencies or othe 
reasons, may be required to perform active duty it 
an appropriate military capacity for a period equa 
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to the time spent in the program. 

SERVICE BENEFITS 

There are numerous advantages to a career in 
military medicine. The Uniformed Services, with 
their vast network of health resources including 
numerous, hospital centers, research complexes, 
specialized educational and treatment facilities, 
and consultative agencies, provide physicians with 
opportunities for flexible career patterns, specialty 
training, and continued professional growth. 
Military medicine allows the practicing physician 
to work with highly trained, dedicated supporting 
staff and professionals, and to work with modern 
medical equipment and facilities in meeting the 
curative and preventive health care needs of the 
Services’ members, their dependents, and the 
retired population. Moreover, military medicine is 
comprehensive, consisting not only of all of the 
customary specialties, but also a number 
of other sophisticated clinical fields such #as 
aerospace, tropical, preventive, and nuclear 
medicine. 

There are also a number of personal 
advantages associated with being a career Medical 
Corps officer. Currently, military physicians qualify 
for retirement after twenty years of active service. 
They do not have to contribute any part of their salary 
to retirement and do not have to invest or risk capital 
to ensure a retirement income in later years. 

The salary schedule for military physicians is 
also competitive. By mid-career, most practicing 
military physicians earn in excess of $40,000 an- 
nually in pay, allowances, and bonuses. While this 
may not compare with the gross income of physi- 
cians in private practice, the military physician 
does not have to pay overhead expenses such as 
rent, utijities, liability insurance, and payrolls. 
Hence, many civilian practitioners must earn cotl- 
siderably more to net as much as the mid-career 
military physician. 

Opportunities for travel also make military life 

exciting and attractive. An assignment abroad pro- 
vides the military physicians and their farnilics the’ 
occasion to become intimately acquainted with a. 
foreign culture and people. The cost of moving 
expenses, whether stateside or overseas. is naid by 
the Services, and each of the military departments 
makes every effort to accommodate the assigii- 
ment preferences of its physicians 

Comprehensive medical and dental care is 
provided by the Services for military physicians. 
Dependents of active-duty personnel are also en- 
titled to medical treatment and care at facilities of 
the Uniformed Services on a space-available basis, 
or under certain circumstances, from a civilian 
medical resource at partial government reimburse- 
ment. Charges for other types of health care for 
dependents vary depending on circumstances, but 
are generally much lower than they would be under 
most other medical care programs. ’ 

Both abroad and in the United States, the Ser- 
vices offer a wide variety of recreatior II and social 
activities for military personnel and their families. 
Virtually all of. the large, established military posts 
and bases have golf courses, gymnasiums, .swim- 
ming pools, bowling lanes, tennis courts, theaters, 
craft shops, auto shops, riding clubs, gun clubs, 
teen clubs, and other recreational facilities. Of- 
ficers’ clubs offer a broad range of optional social 
activities for officers and their spouses. 

Military physicians are eligible for thirty days 
of paid vacation annually. They also. while on 
active duty, are eligible for Serviceman’s Croup 
Life insurance, a term protection plan providing 
unrestricted cover;l~:e up to $35,000 at a low annual 
premium. 

Military doctors and their dependents are en- 
titled to use commissary and post exchange facilities. 
In addition, they arc entitled to professional advice 
and assistance without charge for a variety of prob- 
lems of a personal nature (e.g., advice on income tax 
matters, the execution of personal wills, etc.). 

In sum, the Uniformed Services offer physi- 
cians the time to concentrate on the challenges of 
medicine, and at the sanre time offer them a COIW 

petitive salary, a secure financial future, and a 
welcome balance between professional duties and 
private life. 

,., 
.- \ 
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AGENDA 

for the 

TWENTY-NINTH CONFERENCE ON TlIE DESIGN OF EXPERIMENTS IN 

ARMY RESEARCH, DEVELOPMENT AND TESTING 

19-21 October 1983 

Host: Uniformed Services University of Health Sciences 

Location: Bethesda, Maryland 

08150915 

09150930 

***** Wednesday, 19 October ***** 

REGISTRATION 

CALLING OF THE CONFERENCE TO ORDER 

David F. Cruess, Department of Preventive Medicine & Biometrics, 
Uniformed Services University of Health Sciences 

WELCOMING REMARKS 

0930-1200 GENERAL SESSION .I (Auditorium, Bldg. B) 

Chairman: David F. Cruess, Uniformed Services University of 
Health Sciences 

0930-1030 KEYNOTE ADDRESS 

EPIDEMIOLOGY AND RISK ASSESSMENT: COURTS, CLOCKS AND CONFUSION 

Marvin A: Schneiderman, National Cancer Institute, Bethesda, 
Maryland 

1030-1100 BREAK 

1100-1200 INJURY SEVERITY SCORES‘AND APPLICATIONS.TO MILITARY TRIAGE 

William Sacco, Bellaire, Maryland 

1200-1315 LUNCH 



1300-1715 SPECIAL SESSION ON SEQUENTIAL TESTING (Bldg. A, Room C) 

1300-1330 

' 1330-1415 

1415-1445 

1445-1515 BREAK 

1515-1545 A TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST 

J. Richard Moore, Ballistic Research Laboratory 

1545-1630 EFFICIENT SEQUENTIAL DESIGNS FOR SENSITIVITY 
EXPERIMENTS 

1630-1715 A SEQUENTIAL BERNOULLI SELECTION PROCEDURE 

1830-1930 

1930- 

Chairman: Michael Woodroofe, University of Michigan and Rutgers 
University , 

RELIABILITY MONITORING WITH BERNOULLI SAMPLING 

Daniel Willard, Office of the Deputy Under Secretary of the Army 

A COMBINED BAYES SAMPLING THEORY APPROACH TO TRUNCATED 
SEQUENTIAL BERNOULLI TESTING 

Robert L. Launer, U. S. Army Research Office and Nozer D. 
Singpurwalla, George Washington University 

SENSITIVITY TESTING IN BALLISTItS 

J. Richard Moore, Ballistic Research Laboratory 

C. F. Wu, University of Wisconsin-Madison 

Robert E. Bechhofer, Cornell University 

***** CASH BAR AT OFFICER'S CLUB, ***** 
NAVAL MEDICAL CENTER 

***** BANQUET AND PRESENTATION OF WILKS AWARD, ***** 
OFFICER'S CLUB, NAVAL MEDICAL CENTER 
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***** Thursday, 20 October ***** 

0830-1030 TECHNICAL SESSION ,I - "Statistical Theory" 
(Bldg. A, Room C) 

Chairman: Malcolm Taylor, Ballistic Research Laboratory 

MODEL IDENTIFICATION OF PROBABILITY DISTRIBUTIONS USING 
INFORMATIVE QUANTILE FUNCTIONS b 

Emanuel Parzen, Texas A&M University 

ON-THE LEHMANN POWER ANALYSIS FOR THE WILCOXON RANK SUM TEST 

James R. Knaub, Jr., US Army Lo,gistics Center 

A NEW METHOD OF CALCULATING NORMAL AND t TAIL PROBABILITIES 

Andrew' P. Soms, University of Wisconsin-Madison 

0830-1030 TECHNICAL SESSION II - "Analysis of Longitudinal Data" 
(Bldg. A, Room B) 

Chairman: Charles R. Leake, US Army Concepts Analysis Agency 

COMPLEX DEMODULATION - A TECHNIQUE FOR ASSESSING PERIODIC 
COMPONENTS IN SEQUENTIALLY SAMPLED DATA 

Helen C, Sing, Sander G. Genser, Harvey Babkoff, David R. Thornc 
and Frederick W. Hegge, Walter Reed Army Institute of Research, 

HOW GOOD ARE TRAJECTORY ERROR ESTIMATES? 

William S. Agee and Robert H. Turner, White Sands Missile Range 

1030-1100 BREAK 

1100-1200 GENERAL SESSION II (Auditorium, Bldg. 6) 

Chairman: James J. Schlesselman, Uniformed Services University 
of Health Sciences 

TITLE TO BE ANNOUNCED: INTERACTIVE DATA ANALYSIS 

Jerome Friedman, Stanford Linear Accelerator Center 

1200-1330 LUNCH 
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1330-1600 CLINICAL SESSION (Bldg. A, Room C) 

Chairman: Carl Bates, US Army Concepts Analysis Agency 

Panelists: Robert E. Bechhofer, Cornell University 

Charles Brown, National Cancer Institute 

Churchill Eisenhart, National Bureau of Standards 

Dennis E. Smith, Desmatics, Inc. 

Andrew P. Soms, University of Wisconsin - Madison 

Chien Fu Wu, University of Wisconsin - Madison 

CYCLES OF SUICIDE 

Joseph M. Rothberg, Walter Reed Army Institute of Research 

EXPERIMENT TO DETERMINE EVALUATION OF CURRENT DATA COLLECTION 
OPTICAL INSTRUMENTATION IN THE DESERT ENVIRONMENT 

Robert A. Dragon, White Sands Missile Range 

A TYPE OF CORRELATED DATA IN OPERATIONAL TESTING 

Ellen Hertz, US Army Operational Test and Evaluation Agency 

1330-1500 TECHNICAL SESSION III - "Simulation Techniques and Applications" 
(Bldg. A, Room B) 

Chairman: William Baker, Ballistic Research Laboratory 

A SIMULATION PROCESS FOR DETERMINING RELIABILITY OF FATIGUE 
LOADED STRUCTURES 

Donald M: Neal, US Army Materials and Mechanics Research Center 

RANDOM NUMBERS FROM SMALL CALCULATORS 

Donald W. Rankin, White Sands Missile Range 

APPLICATION OF THE BOOTSTRAP METHOD TO A MEASURE OF FORCE 
EFFECTIVENESS 

Eugene F. Dutoit and Ellen Shannahan, US Army Infantry School 

1500-1530 BREAK 
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1530-1700 TECHNICAL SESSION IV - "Test and Evaluation Techniques" 
(Bldg. A, Room B) 

Chairman: Langhorne Withers, US Army Operational Test and 
Evaluation Agency 

LIFE OF AIRCRAFT BEARINGS RESTORED THROUGH GRINDING OF RACEWAYS 

Martin W. Joseph, US Army Troop Support and .Aviation Materiel 
Readiness Command, and Harold Schuetz, Stew Chen and Mitten 
Dutta, US Army Aviation R&D Command, St. Louis 

ACCEPTANCE OF A MEAL AND ITS COMPONENTS - AN EXERCISE IN MISSING 
DATA 

Edward W. Ross, Jr., 
Laboratories 

US Army Natick Research and Development 

NUMERICAL VALIDATION OF TUKEY'S CRITERIA FOR CLINICAL TRIALS AND 
SEQUENTIAL TESTING 

Charles R. Leake, US Army Concepts Ahalysis Agency 

***** Friday, 21 October ***** 

0830-1000 TECHNICAL SESSION V - "Application in Experimental Design" 
(Bldg. A, Room C) 

Chairman: Jerry Thomas, Ballistic Research Laboratory 

APPLICATION OF FACTORIAL ANOVA PROCEDURES TO FABRIC TESTING 
PROBLEM 

Raymond V. Spring, US Army Natick Research and Development 
Laboratories 

A TECHNIQUE TO APPROXIMATE COMPLEX COMPUTER MODELS 

Joseph M. Tessmer, Department of Energy, Office of the Strategic 
Petroleum Reserve 

FIRE SUPPORT TEAM HEADQUARTER EXPERIMENT 

Jock 0. Grynovicki and Jill H. Smith, Ballistic Research 
Laboratory 

1000-1030 BREAK 
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ld30-1200 GENERAL $ESSION III - (Auditorium, Bldg. B) 

Chairman: Douglas B, Tang, Walter Reed Army Institute of 
Research; AMSC Subcommittee on Probability and 
Statistics 

OPEN MEETING of the Subcommittee on Probability and Statistics 

HIGH TO LOW DOSE EXTRAPOLATION OF EXPERIMENTAL ANIMAL 
CARCINOGENESIS STUDIES 

Charles Brown, National Cancer Institute 

1200 ADJOURN 
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INJURY SEVERITY SCORING AND APPLICATIONS TO COMBAT CASUALTY CARE 

William J. Sacco 

Howard R. Champion 

Washington Hospital Center 

PREFACE 

Injury Scales have wide applications to management of trauma victims in 

civilian and military settings. They are used for epidemological studies, 

prediction of outcome, triage and monitoring, assessment of clinical 

modalities, and for evaluation of patient management. 

This paper is a product of over ten years of research by the authors 

toward developing and validating indices that measure injury severity.'-l3 

The research began in 1972 at the Maryland Institute for Emergency 

Medical Systems (MIEMS) and the Aberdeen Proving Ground with support from 

the Department of Army, and since 1976 has continued at the Washington 

Hospital Center (WHC), Washington, (3. C,, with support largely from the 

Department of Health and Human Services and the Department of the Navy. A 

number of severity indices were developed and tested on a computerized data 

base of over 5,000 patients seen at WHC. Methods for developing and 

validating indices were refined, and methods of triage, monitoring, and 

evaluation of care were developed that used severity indices to describe 

the patient population in terms of degree of injury and probability of 

survival. The indices are based on easily attained data and have proved to 

be reliable predictors of outcome in a number of trauma centers. 

In this paper we describe three indices and military applications. 



The indices.are the Injury Severity Score,14 the Trauma 

Score,9 and the Global Index.15f16 The Injury 

Severity Score is based on injury descriptions in terms of 

anatomical lesions. The Trauma Score is based on assessments oE 

physiological responses soon after injury. The Globai Index 

characterizes patient condition in the intensive care unit using 

measures of organ function. 

Injury Severity Score -- 

The Injury Severity Score is based on the Abbreviated Injury 

Scale17 (AIS), another well known anatomical scale. The 

AIS relies on a list of lesions. Each lesion is assigned a 

severity code from 1 (for ininor injuries) to 6 (for injuries that 

are untreatable and always fatal). Thus, the characterization of 

a multiply injured patient in terms of AIS would consist of a 

string of numerical codes. 

:‘$;!’ I!;!; i:, ti;1:;(!(1 on .AI!; I ;c.t '~12 I- i t: \;I r.:i,t I t':; ITCJ 1" six 1~3dy regions, 

head tll-d I~CC~, Ilacc3, i:hest, abdominal and pelvic contents, 

extremities and pelvic girdle, and external. 

The ISS ranges from 1 to 7'5. The higher the score, the 

i.liiiJlY rl? 1: 'the patient's condition. .[I. rl victim has any injury with 

,>I1 4 I i; value of 6 the T.SR i:; a:;t;iiln\hl ;A value of 75. Otherwise, 



to compute ISS one first identifies the highest AIS code in each 

of the six body regions, and the squares of the highest three of 

the six codes are added to obtain the ISS. 

Trauma Score 

The Trauma Score is a physiological measure of injury 

severity. It is based on seven circulatory, respiratory and 

neurological assessments easily obtained by doctors, nurses, or 

paramedics. 

The Trauma Score is developed from these assessments as 

shown in Table 1. Eye opening, best verbal response, and best 

motor response make up the Glasgow Coma Scale,18 which is 

used worldwide to assess central nervous system function. 



TABLE 1 

TRAUMA SCORE 
CATEGOIiY DEFINITIONS, METHODS OF ASSESSMENT, AND 

A. Respiratory Rate 
Numhe!Zf~irations in 15 seconds: 

multiply by four 

B. Respiratory Expansion 
Normal 
Retractive- Use of accessory muscles 

C. Systolic Blooc7 Pressure 
2SyGtolic cuff pressure- either arm, 

by ausculation or palpation 

MI pulse 

D. Capillary Refill 
Normal,- Nail bad color refill -- 

in 2 seconds 
Delayed- More than 2 seconds capillary 
None- No capillary refill 

E. Glasgow Coma Seal e Total 

1. Eye Opening 
Syx>ntaneous 
'lb voim 
'I'0 lldii-~ 
i !I I, ,i‘ 

3. Best Motor Respnse 
Okys Corwnands - 
142calizes Pain 
Withdraw (pain) 
Flexion (pain) 
t:xt:ens ion (pain) 
11: xi{: 

rrilt. ,7 1 i ;: ‘5 IY)int: ( 1+2t-3) --_A---- - 

4 -- 
3 

-, I ._ --- 
1 -- 

5 -- 
4 .- 
3 

-2 
-1 

Rate 

1 O-24 
25-35 

36 or greater 
l- 9 

0 

CODES 

COdES 

Normal 
Retractive 

90 or greater 

refill 

70-89 
50-69 

l-49 
0 

Normal 
Delayed 
None 

4 
3 
2 
1 
0 

1 
0 

4 
3 
2 
1 
0 

2 
1 
0 

GCS Points Score 

14-15 5 
11-13 4 

U-10 3 
!T- 7 2 
j- 4 1 

6 
--s -- 

4 -* _ 
3 

-7 LA -- 
1 .- 

Score 

A. 

R. 

C. 

D. 

I" J. -- 

---- 
(Tot- ill Points A+Bi-C+D+E) 



To illustrate computation of the Trauma Score, an example is 

given below for a hypothetical patient: 

Assessment 

Respiratory rate 

Respiratory expansion 

Systolic blood pressure 

Capillary refill 

Glasgow Coma Scale 

Eye opening 

Best verbal response 

Best motor response 

Result 

3 in 15 

Score 

4 

seconds 

Normal 

127 

Normal 

1 --I 

4 -- 

2 

Spontaneous (4) 

Oriented (5) 

Obeys commands (6) 

Total GCS = 15 5 

Trauma Score = 16 

5 



Table 2 contains probabilities of survival for values of the 

Trauma Scbre based on penetrating injury data.19 

TABLE 2. Probabilities of Survival, PS, for each value of the 

Trauma Score 

TS Probabilitv of Survival 

16 

15 

14 

13 

12 

11 

10 

9 

8 

0.99 

0.98 

0.97 

0.94 

0.89 

0.82 

0.70 

u.55 

0.40 

0.26 

0.15 

U.U88 

0.04n 

0. (126 

0.014 

0.007 

6 



Global Index 

The Global Index is used in the intensive care unit to 

characterize patient condition: 

Global Index = R, + C, + B, + G,, 

where 

Rn = 1.5 x Respiratory Index 

c -n = 0 if serum crcatinine is one or less 

2.0 x (serum creatinine - 1.0) otherw‘ise 

Bn = 0.5 x serum bilirubin 

Gn = IS.0 - Glasgow Coma Scale 

The Respiratory Index (RI), a measure of respiratory 

insufficiency, is defined as follows: 

RI= 713FTn7 - P,Co? - Pa07 
pao2 

FI02 = fractional wrlcc;tn tration of 02 in 
ins)-)ir-c:tl rjd:; 

pa02 = artcri.31 1,ari:i;lll prff:::;l1r(2 of oxygen in Lorr 

P,COz = arterial partial pres:; IJY': of carbon dioxide in torr 



The numerator of the RI is an approximation of the 

alveolar-arterial oxygen difference, which is an indicator of 

oxygen sufficiency and an important consideration in controlling 

arterial oxygenation. 

The RI , serum creatinine, serum bilirubin, and the Glasgow 

Coma Scale have proven to be excellent indicators of renal, 

hepatic, and central nervous system function, respectively, in 

trauma paticnts.l-G1lO~ll 

Application to management of Combat Casualties c- 

Here we discuss applications of the indices to the triage, 

tracking, and evaluation of management of casualties. 

Triage Principles-Incorporating a Physioloqical Response Score --- - .I._ - -- 

Triage is a method of managing mass casualties including 

;J:;::I.~::':.I,~ !,I. ,111il r:l (:I:;:; i 1. i ~41: ion OK (:.1!;11;3 It ic:; l'or prior it ies of 

1: twI'Cl I I;\( ‘i.1 I ,I!,( 1 ( :/,-I~':II~I 1 ion. In ;A w,:~t-I: ~III(: mdss ca:;ualty situation, 

the priorities of trt2atment and evacuation are dependent 

obviously on military objectives. The priorities can be 

radically different for different objectives. 

-8 



The triage principles discussed here,.which implement 

physiological response scores, are intended to maximize 

survivors. As such, these principles would he appropriate after 

other higher priority objectives (if any) had been addressed. 

By definition, in a mass casualty situation, resources are 

not available for meeting the needs of all casualties over a 

short period of time. Hence triage is used to sequence patient 

care. It' the objective is to maximize survivors, establishing 

urgency is the first sorting criterion. 

The battalion aid station is the primary site of casualty 

sorting. Under some current military protocols, casualties are 

examined by the battalion aid station medical officer or 

assistants. The medical officer determines the level of 

treatment required and the priority of evacuation. 

1) Minimal: --- Ttlo~e car,~.lalties whose injuries are so slight 

that they can be managed by self-help or buddy care and 

*can be returned promptly to their units for full duty. 



2) 

3) 

4) 

Delayed: Those casualties whose wounds require medical 

care but are so slight that they can be managed by the 

battalion aid station or in the amphibian objective area 

and can be returned to duty after being held for only a 

brief period. 

Immediate: Those casualties whose conditions indicate 

the need for immediate resuscitation, and usually 

surgery. 

Kxpcctant : Those casual t icr, that have low chances of 

survival even if accorded full medical resources, 

Triage in the field involves priorities for care in the field 

and for evacuation to higher echelons of care. Casualties may be 

triaged many times in the field. Frequency will depend upon such 

factors as the intensity of combat and availability of time and 

reso~lrccs for rcsuscitatibn, treatment, or evacuation, or for 

more definitive assessment and treatment. 

I Ii ,.lt’lI i ’ l ,‘~‘1111l:;1,~.1II(Ir!“ *’ I :;(:I’ i l.~.l nlc’,lr:l.It~l~rllc’n~ I,; 01’ a physiological 

response :jcorc can help provide a finer discrimination of 

patients in Categories 3 and 4 at various stages of triage and 

care. For cxarnpl if : 

1. Each patient in Categories 3 and 4 can be assigned a 

;)robahi 1 ity of :;Iirvival , Pf;, as:;oaiated with the response 



2. Serial assessments can be used to measure the clinical 

"change of state" of a casualty: 

a. From scene of wounding to Battalion Aid Station (BAS). 

b. Awaiting resuscitation therapy at the BAS. 

C. Before and after resuscitation at the BAS. 

d. In the holding area at or near the BAS. 

e. During evacuation. 

f. Awaiting additional care in the field hospital. 

The serial scores would provide evidence of casualty 

deterioration, stability, or improvement. 

Several studies have evaluated the Trauma Score as an adjunct 

to casualty triage in the early stages of combat care.20r2' 

The results showed that Navy Corpsmen were capable of obtaining 

Trauma Score assessments with minimal training and their facility 

anal .-~(*n~~rncy improvr:d wit-h rcp~tii: ivc? rlr i. 1 1 :; ;~n(l pracl. i c:(-! on 

:; iml.1 1 -I I I -ii (:.I::II,~~ tit.::-;. 

Patient Tracking 

The Trauma Score and Global Index can provide a permanent 

record of patient condition transitions from the injury scene 

thro~lgh the ICU, with implications f'or triage, evaluation of care 

in general, and evalllation i-,f :-;pc:c i F ic: I-herapeutic modalities at 

a 1 1 f!ChC 1Ol-l s 0 [: CCI r rr l 

11 



One of the simplest methods for tracking the progress of a 

casualty is a time series plot of the survival probability P,, 

illustrated for a hypothetical patient in the figure below, 

1.00 
v 

0.80 
. 

PS 0.60 

0.40 

P 

l 

1 
1 0 

0.20 -_-- .-..-.. -.-.._ _-..- . --- _- 
Location S B H F Dl D2 D3 D4 

The symbols on the horizontal axis are defined as follows: 

S: Scene of injury 

B: Battalion Aid Station 

11 : IJo.lding Area 

F: Field Hospital 

In the construction of such a chart, the probability of 

survival estimates for S, 13, Il,and P are based on a simple score 

(Trauma Score or variant) and those for l3i are based on the 

C; 1 :)l-,h I 1 ncicx. 

12 



In addition, we can provide a graphical presentation of the 

ICU record by means of “anatoglyphs”, like the diagram shown 

In these anatoglyphs, the five body regions of greatest 

physiological importance (the brain, heart*, kidney, lungs, and 

liver) are outlined with scale markings. Shading these five 

areas to a height corresponding to the severity of the individual 

organ’s derangement gives an anatoglyph of the patient’s 

condition. An example is shown below. 

13 



The number appearing near the mouth of the .profile is the Global 

Index. A series of daily anatoqlyphs transforms the patient's 

charts into a picture sequence that can be read at a glance. 

Evaluation of Care 

IJere we present a two-phase approach15f24 to evaluation 

of patient care. 

The first level, called PRE (from PfWliminary), identifies 

unexpected' survivors and deaths. These cases may be therapeutic 

triumphs or failures. PRE can be used to assess patient 

management at any echelon. 

The second level, the State Transition Screen or STS, 

identifies patients with unusual clinical courses in the 

definitive care unit. Among these are patients who improve 

PRE: Semi-Quantitative hr;scr,s merit of Trauma Care 



In the discussion here, we use the Trauma Score as the 

physiological assessment and the Injury Severity Score as the 

anatomical assessment. 

The scores are plotted on an x-y graph as in Figure 1. For 

example, a patient with an ISS of 25 and a TS of 13 is 

represented by an x or a dot at coordinates 25,13. The dots are 

survivors and the x's, deaths. Multiple occurrences at the same 

coordinates are indicated by a n\lmhcr near the symbol. 

On such a plot, whatever the scales employed, survivors 

usually predominate toward one corner of the plot, deaths at the 

opposite corner; and mixed results are seen along a sloping line 

that cuts across the connecting diagonal. Such is the case in 

Figure 1, where survivors predominate at the lower left and 

deaths at the upper right. The sloping line in Fiqure 1 is 

The survivors, whozc poi.nts arc above the line, and the 

nonsurvivors below the line, art' the patients sought to be 

15 
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D.C.) from January 1, 1980 to December 31, 1981.24 The S50 

isobar in the figure was computed from earlier data. This 

combination -- of current data and historic isobar -- illustrates 

the usual implementation of PRE. In practice, a patient's (ISS, 

TS) pair is plotted as soon as his data are available, and the 

decision whether the patient outcome was unexpected (in a 

statistical sense) is based on an isobar from previous data. PFE 

can also be implemented with two-component physiological scores. 

These pairs are nearly as powerful as the physiological 

anatomical pairs. The patient can be represented as soon as the 

measures are obtained. One need not wait for an anatomical 

assessment. Fiqure ? is an example for a two-component pair 

applied to serious head injured patients. 

State Transition Screen (STS) 

The cases cited by PRE are not the only ones that are 

it-11 r-i 4 ,,I i ,,: 1 dnr1 rl(::;c:r-v j 11rj 01. ;11lrl i (:. i‘)I Ilt:r- i nl: c!rr?s:t inq cases are 

I:!I(',!:i, ..ii,r~::~~ ;~:ll,r i ::I; ion :;C:r)t-(2:; 1:o (lcl‘initivc c!arc? f‘acility indicate 

a betttl-r ttlan 50 percent chance of survival, but who deteriorate 

substantially before they recover; and those whose admission 

scorCT< intlicatc cl low prol>ahility of survival, but who improve 

:;ub.c,tant:ialZy before they dip. To sift out these cases, we need 

; -1 I i ;j :; : 1 1. ,j :; of patient r33ncq i izion, ,lncl criteria Ear distinguishing 

17 
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The survival probabilities needed are the admission value 

(PA) and daily values in the ICU. The admission value can he 

based on a Trauma Score - ISS combination or a two-component 

physiological score, and the ICU values can he based on the 

Global Index. 

The audit selection criteria in STS are different for 

survivors and non-survivors. The survivors selected are those 

for whom PA is greater than 0.50, hut whose survival 

probability falls below PA by 0.25 or more during the ICU stay. 

The non-survivors selected are those for whom PA is 0.50 or 

less, but whose Global Index reaches 10 or less during the ICU 

stay. 

19 
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A Combined Bayes-Sampling Theory Method 
For Monitoring a Bernoulli F’rocess 

Robert L. Launer, U.6, CIrmy Research Off ice 
Noxsr D. Singpurwalla, George Washington University 

We assume a population of one-shot missiles which are stored 
in a ready ur near ready state at the physical point of their 
deployment. We hope that the missiles will sit in idle waiting for 
many years, but this allows environmental effects to degrade t,he 
missiles@ capability of successful deployment. Since even a brand 
new missile IlldY fail to operate properly, and there are nc 
important physical differences between the individual missile% in 
the given population, we shall assum& that a randomly selected 
mis5ile will have a probability pt of successful deployment 9 or 
reliability, at time t. 

It is obviously important to monitor per so a sample of thy 
missiles is tested periodically. Since the testing is destructive, 
the population is eventually depleted by tha test.ing. Furthermore, 
defects in missile design may be uncovered, so modif irations ma) 
be introduced which will have a tendency to increase t. h (:: 
reliability. For technical reasons, however, we choose to dczxribc 
a tast which is designed to detect a deterioration in thE 
reliability. 

No target value for the reliability is given by management, ~(3 
that the testing at time t, is used to determine if there has beer 
a change in the reliability since time t.-2. The following 
requirements are given and will be used to formalize a test 01 
hypothesis to accomplish the goals of the testing procedure. 

It is required to: 

1. detect whether p.t has changed by an amount d’ since the 
immediately preceeding ., tegting period, with a probability of ai 
least w at time t=2,3,4,... 

7 compensate 
eatimaFE? 0.f pt, 

fur the sampl i ng uncertainty in p.rr thl 
in constructing the test of hypothesis. 

3. use thi minimum possible sample sizes in accomplishin 
requirements 1 and .ZV above. 

Si nre the test data are pass-fail ih nature, the binomia 
probability model is5 appropriate for describing the atochwsti 
eampl e behavi our. Suppose we choose the test size to be 1:1! for the 
hypotheses: 

H 0: pt=pt-x 
H 1: Pt= (p---l. 1 -d’ 
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Requirement 1, above, lead% to & type II error, p-l-~. We are 
then 1 cad to solve the following inequalities simultaneously for 
n, and K ; follows. Let B(K,n;p) represent 
binomial probizility of M or fewer ~~uccessj~ps in n trials. 

the cuM;tf;e 
I 

Then the inequal i ties D+ interest are: 

B(xF,nt;pt) & r~! (1) 

B(xX,n*.,;p c-d”) 2 1-13 (2) 

For P t ‘- 1. known I the null hyp.sthesi !s i 5 rejected if the 
current sample yields KC or fewer reliable missiles. Since pt-]. is 
not known p however, (1) and (2) are solved after substituting ptdl 
for p,--3. since we have na target value for it. We will account for 
this uncertainty by averaging the pair KZ, nt with respect to the 
prior distribution for p-tU First, however I we shall introduce a 
sequential scheme to reduce the sample sires required. 

FCV practical reasons9 the missiles are tested sequentially 
in time. Theref ore9 when a critical sample value is obtained, the 
sampling may be curtailed, That is,’ if K;“+i successful tests or if 
n.t-xE+l failures are experienced before the sample is completed 
then the test may be curtailed (terminated prematurely) without 
effecting the error distribution ‘of the t.est. The curtailed 
sampling distributian is expressed as followe. Given pt and XX, 
the probability that n *=:< when a curtailed sampling procedure is 
used is: 

F’Cn,-=x lpt 3 = 
)I - 1 ( > nt-xg n- (n a-Xii) 

(i-p,) P* + (3) 
nt-x$-i 

k ) 

I 
n L I K-n *- I X$+1 

(l-p,) Pt; , Kt”(K2n.t 
X-1($-1 

In order to obtain PCn,=xl, we compute the average with 
respect to the prior probability for ptr given by g(p,l#), In the 
absence of information to the contrary, the conjugate prior in 
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the binomial case, is not only convenientr but also natural. This 
prior is the Beta distribution given by: 

g(pla,b-,H) = B-l(a,b)p--x(l-p)~--r, all, b>l - I 

where, 
Bla,b) = I’(a)r(b) /r(a+b) 9 

i-h) is the gamma function Cl, p& 25s1, and H refers to the 
experimental hypothesis relevant to our situation. The averaging 
process yields: 

B-l (a, b) R (x-nt+x$+a, nt-xg+b) 

for n t-r.$*Q Q<g 

FCn t=xl = R-l (a,b) B(x-nt+x~ea,n,-w~+b) + (4) 

The expected sample size, ECntJs can be obtained by computing: 

Etnt 3 =’ i xFCnt,=xl 
x-0 

A full Eayesi an -treatment of the problem is developed as 
follows. Equations (1) ; and (2) are averaged with respect 
prior as shown below. 

to the 

s 1 

0 
B(x~,n,;p,)g(p,lH)dpt i ct 

f 

1 
E(xZ,nt:p*- 

0 
d)g(ptlH)dpt 1 l-8 

Integrals (5) and (6) ma\y be re-expressed in closed form which 
allows them to be solved iteratively f Or Rt and h+,. These va 1 ue5 
are then used in equations (3) for computing the expected sample 
sizes. We point out that (3) is related to the predictive 
distribution which is used for model checking or informal 
hypothe;iis testing in the Payesian context t2, p.3851. 

(5) 

(6) 
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~w7erall yB prior distributions on unknown par-ameters involve 
parameters of their own which, in turn9 depend on the experimental 
conditions nr hypotheses. In our example the parameters are ‘a* and 
‘b’, The e%psrimental hypotheses and specific parametric values for 
our situation are abtained and applied by using the following line 
Of reasoning. &fore the initial test, little or no a-priori 
information 1~8 available about p- so a flat prior distribution is 
assumed l The unif arm prior corresponds to the parameter values 
a=b’= 1, and assent i al 1 y a!ssignc equal weight3 to all values of pt 
in the interval (c),1). After the first test sample has been 
obtained, say Xa and nx, the posterior distribution is a Eeta 
distribution with parameters a+w 1 and b+ns-xl. The mode of the 
posteridr may be used as an estimate for,pl. This is given by 
p1=(a+x I-1) / (a+b+nl-21 r and as noted previously, is the value 
against which the second sample is tested. The complete testing 
strategy is outlined below. 

5, Before testing begins, the prior distribution is defined. This 
shaul d be based on engineering know1 edge and experience and 
developmental history. Since it is not usutilly possible to obtain 
that information *from engineers, it is imperative to provide a 
reasonable alternative. For this we suggest using an initial 
samp 1 e b corresponding to time t=O. The implied prior for the 
initial sample is the uniform distribution of the Beta family. . 

9 The monitoring procedure begin 
;;oceeds as f (311 ows. 

s with the first test sample and 
At time t(=l,2fi3,... 1 the prior distribution, 

g-k(,), is the posterior distribution from the test at time t-l, or 
he-1 (  l 1 .  The mode of the prior is the value for pt.-j, in the null 
hypothesis against which the sample at time t is tested. 

5, The sample size and critical value for the test is obtained 
from equations (1) and 12). If the sample results on an acceptance 
of the null hypothesis, then the sample values are used to update 
the prior, resulting in the posterior distribution. FI new modal 
value for’ p is obtained which will bo used in the test at time 
t+1,. and a new sample size and critical value are obtained. 

4. If the sample rrsul ts in a rejection of the null hypothesis at 
time t, then the current prior’ is discarded, and the current 
sample is used to determine the priur.for the following test of 
hypothesi sr 

The authors wl rah to arknawledgs helpful di xussi one with 
Prof. George BQK,, Prof. Michael Woodroofe,- and Dr. Daniel Willard. 
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Abstract 

This paper describes a new closed adaptive sequential procedure 

proposed by Bechhofer and Kulkarni [1982aJ for selecting the Bernoulli 

population which has the largest success probability. The performance of 

this procedure is compared to that of the Sobel-Huyett 11957) single-stage 

procedure, and to a curtailed version of the single-stage procedure, all of 

which guarantee the same probability of a correct selection. Optimal 

properties of the Bechhofer-Kulkarni procedure are stated; quantitative 

assessments of important performance characteristics of the procedure are 

given. These demonstrate conclusively the superiority of the new procedure 

over that of the competing procedures. Relevant areas of application are 

described. Appropriate literature references are provided. 

Key Words 

Bernoulli selection problem, selection procedures, single-stage 

procedure, closed sampling procedures , one-at-a-time sampling procedures, 

adaptive sampling procedures, curtailed sampling procedures, vendor 

selection, clinical trials. 
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1. Introduction 

The problem of devising statistical procedures for selecting the 

Bernoulli population which has the largest "success" probability has been 

the subject of intensive research by many.investigators for more than 

twenty-five years. Interest in this problem stems from the fact that it 

arises in many areas of application of great practical importance: It 

arises, for example, in vendor selection when the purchaser seeks to 

identify the vendor with the largest fraction of conforming items. 

Similarly, in research and development, it arises when the scientist wishes 

to identify the process or system which has the largest probability of 

performing best. In clinical trials the medical researcher studies various 

treatment regimes with the intent of determining the one which has the 

largest probability of achieving a cure (or some other desirable effect) 

for the malady, under investigation. Recently it has been shown that the 

problem of selecting the Bernoulli population with the largest success 

probability is closely related for quanta1 response curves to the problem 

of selecting the curve with the smallest q-quantile; this latter problem 

arises in certain military and medical settings. (See Tamhane [1983).) 

The published literature on the Bernoulli selection problem and 

associated procedures is vast. The interested reader is referred to an 

article by Bechhofer and Kulkarni [1982a] for a recent survey of these 

papers, In that article the authors proposed closed adaptive sequential 

procedures for various Bernoulli selection goals. Unlike,earlier 

procedures which had been proposed on ad hoc or heuristic grounds, these 

new procedures have certain important optimality properties and in addition 

have ve.ry desirable performance characteristics. It is the purpose of this 

present article to introduce the reader to the Bechhofer-Kulkarni procedure 
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for the particular goal of selecting the Bernoulli populatlon which has the 

largest success probability, and to describe some of its properties. 

Appropriate literature references are given for those who wish to study the 

procedure in greater depth. It is perhaps of some interest to note that 

all of the articles concerning this new procedure have appeared within the 

past two years. 

2. Statistical assumptions and notation 

Let "i (1 5 i 5 k) denote k 2 2 Bernoulli populations with 

corresponding single-trial "success" probabilities pi. Denote the ordered 

values of the pi by pc,,i ,.. 5 pck3; the values of the pi and of 

the P[jJ' and the pairing of the I+ with the pcjl (1 2 i,j i k) are 

assumed to be completely unknown. The Joal of the experimenter is to 

select the population associated with pTk,; when this population is 

selected, the experimenter is said to have made a correct selection (CS). 

For each of the examples cited in Section 1, it is meaningful to refer to 

the population associated with pck3 as the "best" population. 

3. Bernoulli selection procedures 

3.1 A single-stage procedure 

Sobel and Huyett Cl9573 proposed a single-stage procedure for 

selecting the best Bernoulli population. Their procedure which was 

developed while the authors were employed at the Bell Telephone 

Laboratories was motivated by industrial applications. This single-stage 

procedure PSS = (?$S,TSS) has a sampling rule (Q) and a terminal 

decision rule (Tss) which are given below. 
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SINGLE-STAGE PROCEDURE (PSS) FOR SELECTING THE POPULATION 

ASSOCIATED WITH pIk3. 

Sampling rule (RSS): Take exactly n independent observations 

from every population. 
(3.1) 

Terminal decision rule (TSS): Let xi denote the number of 

"successes" in the n observations from ni, and let 

'Cl] 5 ‘[2] 5 l ‘- 5 ‘[k] 
denote the ordered values of the 

(3.2) 
Xi (1 5 i 5 k). Select the population that yielded x[k3 

as the one associated with p 
[kl' 

randomizing among all 

populations that have x-values equal to xckl, 

We now give two examples of PSS. In these examples wz denote a success 

(failure) from ni by Si (Fi) (1 5 i 5 k). 

Example 1: (k = 3, n = 3) 

Here xc2] = 2 < x [3] = 3a which was yielded by n2. Hence, select 92 

as the population associated with p 
133' 
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Example 2: (k = 3, n = 3) 

? n2 "3 - - - 

3 F2 s3 

s1 s2 s3 

s1 s2 s3 

Here x 
[l] = 2 < x[2] = x[3] 

= 3 which was yielded by rr, and n3. Hence, 

select (II,,~,) with probability (i , 2 1) as the population associated 

with PC3-J' 

3.2 Sequential procedures involving one-at-a-time sampling 

Throughout we limit consideration to the class of sampling rules (R) 

which take no more than n observations from any one of the k 

populations; the single-stage procedure is clearly in this class. The 

choice of n > 1 is arbitrary and can be arrived at using economic 

considerations. 

We shall describe sequential procedures in which observations are taken 

one-at-a-time (instead of in a single-stage) and show the gains that can 

be achieved by employing them. We denote a success (failure) from I$ at 

stage m by Sy (FYI (1 5 i 1. k, 1 (m 5 kn). Let ni m , 
denote the 

m, and let 

through 

total number of observations taken from ni through stage 

z i m denote the total number of successes yielded by rIi 
, 

stage m (1 Li (k; 1 Lrn 5 kn). 

In Section 3.2.1 we describe a sequential procedure PC = (RC,SC,TC) 

which uses arbitrary one-at-a-time sampling rules in conjunction with an 

obvious stopping rule employing what we term weak curtailment (along with 
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an associated terminal decision rule). We show by examples how PC can 

achieve a decrease in the total number of observations to termination 

relative to the kn observations required by the corresponding 

single-stage procedure. In Section 3.2.2 \~e describe our new sequential 

procedure P* = (R*,S*,p) which uses an optimal one-at-a-time sampling 

rule in conjunction with a stopping rule employing what we term strong 

curtailment (along with an associated terminal decision rule). Examples 

are given to show how P* operates, and the savings that can be achieved 

by using it. Ry weak curtailment we mean that a strict inequa 

holds in (3.4) below, while by strong curtailment we mean that 

inequality (>) holds in (3.6) below. 

In Section 4 we give some of the optimality properties of 

lity (>) 

a weak 

pk, and 

point out the ways in which P* is superior to PC. Section 5 contains 

some typical results concerning the performance of p*. We make some 

concluding remarks in Section 6. 

3.2.1 Procedures 

We now descri 

PROCEDURES (PC) 

be the procedures (PC) in this class. 

FOR SELECTING THE POPULATION ASSOCIATED WITH pck,. 

Sampling rule (RC): At stage m (0 (m 5 kn), take the next 
(3.3) 

observation from an arbitrary one of the k populations. 

Stopping rule (SC): Stop sampling at the first stage m 

at which there exists at least one population ni 

satisfying 

z i m > 2. J ,m + n - nj,m for all j * i (1 5 i,j 5 k). 
, 
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Terminal decision rule (TC): If r 11 populations, say 

n. 
'1 

s-m-, ni I simultaneously satisfy (3.4), then select 
r 

one of them at random as associated with p 
PI' 

The stopping sequences given in the following examples illustrate how 

Examnle 3: (k = 3, n = 3) , 

In this examp le we have assumed that the first six outcomes of Examp le 1 

PC = (RC,SC,TC) operates. 

? n2 "3 - - - 

F3 
1 c G 

s5 2 
F2 

3 

S6 2 

were obtained in the order indicated by the superscripts. Clearly one can 

stop sampling after having obtained SE, and select n2 as the population 

associated with p 
[33' 

Here rr2 has "beaten" II, and II;, and this 

result will not change no matter what the outcomes of the remaining three 

observations. 

Example 4: (k = 3, n = 3) 

=1 n2 n3 - - - 

S2 F' 
1 2 S35 

3 
s1 S6 

S4 
1 Sf 
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In this example we have assumed that the first seven outcomes of Examp 1 

were obtained in the order indicated by the superscripts 

stop sampling after having obtained and select (TI, 

probability (* , 2 1) as the population associated with 

Thus one ca n 

J-I,) with 

pc3lg 

e2 

Remark 3.1: We see that PC arrives at the same terminal decision as 

does PSS. Therefore, it achieves the same probability of a correct 

selection as does pssg Moreover, it usually accomplishes this with a 

smaller total number of observations to termination than the kn observa- 

tions of the corresponding PSS. 

3.2.2 The procedure pk = (R*,.S*,T*) 

Our procedure P which uses an optimal. sampling rule (R*) in 

conjunction with the stopping rule (s*) and the terminal decision rule 

CT* > is described below. 

PROCEDURE (p") FOR SELECTING THE POPULATION ASSOCIATED WITH pck3. 

Sampling rule (R*): At stage m (0 im ( kn-1), take the next 

observation from the population which has the smallest 

number of failures among all ni for which ni m < n 
, 

(1 5 i i k). If there is a tie among such equal-number- 

of-failure populations, take the next observation from 

that one of them that has the largest number of successes, 

If there is a further tie among such equal-number-of-success 

populations , select one of them at random and take the next 

3.5) 

observation from it. 



Stopping rule (9): Stop sampling at the first stage m at 

which there exists at least one population "i 

satisfying 

2. i,m 1 'j,m 
t (n-nj m) for all j f i (1 5 Lj 5 k). 

, 

Terminal decision rule (T*): If r 11 populations, say 

Il. 
'1 

,**a I 'i 9 simultaneously satisfy (3.6), then 
r 

select one of them at random as associated with pck3. 

(3.6) 

(34 

We now give two stopping sequences to illustrate how 

P* = (R*,s*,T*) operates. 

Example 5: (k = 3, n = 3) 

9 "2 rr3 

3 
- I 

F1 S4 2 
1 

s3 

s5 2 2 F3 

In this example we have applied p* to the first five outcomes of 

Example 3. We see that at stage 5, n2 satisfies (3.6). Hence, 

select II2 as associated with pc3,. Here neither TI, nor f13 can 

do better than tie rr2 no matter what the outcomes of the remaining 

four observations. 

Note: We point out that (3.5) is a well-defined sampling rule which 

dictates the population or populations from which the next observation nust 

be taken. Thus, for example, if in Example 5 the outcome of the second 

observation from 113 were a success Csp) instead of a failure (F:), 

then the third observation must be taken from n3. 
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Example 6: (k = 3, n f 3) 

n2 n3 
“1 r  -  

s2 1 F2 

S3 
1 

S f 

In this example we have applied p* ,to the first four outcomes of 

Example 4. We see that at stage 4, n, satisfies (3.6). Hence, 

select n, as associated with p 
C33' 

Here n, has "beaten" n2, and 

n3 
cannot do better than tie II 

1' 
no matter what the outcomes of the 

remaining five observations. 

We now point out an important property shared by PSS, PC and. Px 

(along with many other competing procedures). This property,is summarized 

in Theorem 3.1, below. In the theorem it is assLaned that if two or more 

populations have a common p-value equal to pck3, then these tied popula- 

tions are tagged in such a way that their ordering is unique, i.e., one is 

associated with p 
&I 

a second with p [km,]' etcm 

This fundamental result was first proved (in more generality and under very 

reasonable assunptions) in Kulkarni [1981], and reported in Bechhofer and 

Kulkarni fl982a). More recently Jennison [1983] proved a much more 

general result. 

Note: We have already po 

PjCS 

inted out in Remark 3.1 that P{CS (Rss,Tss)} 1 
I 

1~ in (P,,P~, l *= , P , ) *  I (R&JC)} unifon 
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In order to have a rational basis for making distinctions between 

these procedures , and in particular for deciding which one is "best" in 

some reasonable sense, it is necessary to study other important performance 

characteristics of the procedures. Two such performance characteristics 

are E{N(i) } (1 5 i i k) and. E{N); here N(i) denotes the total number 

of observations taken from the population associated with pLil (1 Li 5 k) 

and N = I:=, N(i) denotes the total number of observations taken from all 

k populations, when a procedure terminates sampling. In Section 4 we cite 

several optimality properties of P, stated in terms of E{N(i)} 

(1 5 i 5 k) and E{N}. In Section 5 we give some typical results of 

studies made of the performance of E(N). 

4. Optimality properties of P* 

The theorems cited below concerning the optimality of P* are proved 

in their present generality (along with others) in Kulkarni and Jennison 

[1983), and are reported on in Bechhofer and Frisardi [1983]. Earlier, more 

restricted versions were proved by Kulkarni [1981]. Further optimality 

results are contained in Jennison and Kulkarni [1984]. 

In this section, R refers (as before) to an arbitrary sampling rule 

which takes no more than n observations from any one of the k > 2 popu- 

lations, and which is used in conjunction with the stopping rule $,* and 

the terminal decision rule TX of (3.6) and (3.7), respectively. For 

k = 2 let F* denote the conjugate sampling rule in which ni m-zi m and 
, 3 

Z i m respectively. We 
, 

of (3.6) are replaced by ti m 
, 

and ni m-zi m, 
s I 

now state several theorems concerning the optimality of R* and @. 

39 



Theorem 4.1: For k = 2, a necessary and sufficient condition that 

P* = (R*,S*,T*) minimize WI (P, rP$l among all procedures (R,S*,T*) 

is p,+p2 2 1. For k = 2, a necessary and sufficient condition that 

7* = @,S*,T*) minimize E{NI(P,,P~)} among all procedures (R,S*,T*) 

is P,+P2 5 1. 

Theorem 4.2: For k = 2, a necessary and sufficient condition that 

P* = (R*,s*,~*) minmite EIN(, ) 1 (P, 41 among all procedures 

(R,S*,T*) is 

3- P[lJ - /(3-P&-4 
PC211 . 2 (4-l) 

Theorem 4.3: For k 2 3, a sufficient condition that P* = (R*,S*,T*) 

minimize E{N((P,*P~,"~' p,)} among all procedures (R,S*,T*) is 

k 

'Cl1 + ii2 ' - CiI/(k-1) 1 1, (4.2) 

Theorem 4.4: For k > 3, a sufficient condition that P = (R*,S*,T*) 

minimize IT=, E{N(i)I(p,,p2,...,pk)} for all s (1 5 s 5 k) among all 

procedures (R,S*,T*) is pL,l+pE21 2 1. 

Remark 4.1: It can be shown from (4.1) that P* minimizes E{N (l)( (Pl,P,)~ 

among all procedures (R,S*,T*) over approximately 81.55 percent of the 

(p,,p2)-parameter space. 
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Remark 4.2: In the context of clinical trials it is desirable to minimize 

the expected number of observations taken from the inferior populations, 

i.e., those with small p-values. Hence, the relevance of Theorems 4.2 

and 4.4. 

The foregoing theorems summarize some of the most important optimality 

properties of P*, and show why, in particular, it is superior to PSS 

and P C' Not only is P* superior to PSS and PC but also any procedure 

which uses R in conjunction with S* is superior to a corresponding 

procedure which uses the same R in conjunction with SC. 

Remark 4.3: The following additional properties of P* have been shown to 

hold: 

a) n LN L kn-1 for all (pl,p2,+..*pk) 

b) P{N = n (p,,p2'"*'Pk)} + 1 for PC,] + 1, I 

P{N = h-1 (p, ,p2$ l l * #pk)} + 1 

I  

for qkl + Om 

As a consequence of a) we have 

c) n ( E(N) 5 kn-1 for all (P,,P~,~~.,P~) 

4 p--&F 
1 < VI kn-1 for all (pl,p2,...,pk). The ratio E{N)/kn 

can be thought of as a measure of relative efficiency, small 

values of the ratio favoring P*. 

5. Performance of P* 

Extensive studies of the behavior of P* have been carried out in 

order to obtain numerical assessments of its performance--in particular to 

study the distribution of N(i) ' and EtN(j) ) (1 < i < k), the distri- _ - 

bution of N, and E{N), as well as the achieved P{CS). Bechhofer and 

41 



Kulkarnl [1982b] provides many tables of these quantities for k = 2 and 3 

with selected n and (pc,,,pc2,,...,pck,); all of the results given in 

the tables are exact, having been calculated using recursion formulae. ,,. 

Bechhofer and Frisardi [1983) provides a large number of analogous tables 

containing very precise estimates of such quantities (and others) for 

k = 3,, 4 and 5 with selected n and (p~,,,pc2,,.,.,pck3); these were 

obtained using Monte Carlo (MC) simulation since the cost of calculating 

exact results would have been prohibitive. 

Three typical tables taken from the aforementioned articles are 

reproduced here. Table 5.1 shows for k = 3, n = 7 how the distribution of 

Nu) 
(1 5 i 5 3) and hence E{N (i)} (1 < i < 3) and E{N} change as the _ _ 

~ differences betrreen the pciI (1 si 5 3) become larger; in each case the 

pi (1 ii 5 3) are equally-spaced around pc2, = 0.6, the spacing increas- 

ing from 0.1 to 0.4. We note the dramatic decrease in E(N (1 )I and W(2)1’ 

and also the large decrease in W as the spacing increases. The V(j )I 

(1 5 i 5 3) values of 3.47, 4.28 and 5.46 for the p-vector (O-5,0.6,0.7), 

and the values 0.62, 1.22 and 6.58 for the p-vector (0.2,0.6,1.0) are to be 

compared with the n = 7 observations per population required by the 

corresponding single-stage procedure; the corresponding E(N) values of 13.21 

and 8.42 are to be compared with kn = 21 for the s i 

AS a consequence of Theorem 4.3 we note that P* is 

p-vectors in Table 5.1 since Ptl] + (p[2]+p[3])/2 2 

ngle-stage procedure. 

optimal for both of the 

1. 

Table 5.2 shows for k = 5, n = 50, how E{N (i)} t1 5 i 5 5, 

decreases as pc5, of the p-vector (p ~~~~~~~~~~~~~~~~~~~~~~~~ increases 

(PC51 
= 0.45(0.10)0.95) while the differences pci3-pci~,1 (2 5 i 5 5) 
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TABLE 5 ll! . 

Exact distribution of N(i), and E{N(i)} (i = 1,2,3) and E{N} for P* 

when k = 3, n = 7 and (P~,],P~~],P~~] ) = (0.5,0.6,0.7) and (0.2,0.6,1.0) 

a 

EIN(, ) I 

P[, 1=0.5, ~c2]=0-6, Pc31'Om7 

W(, )=a) 

0.054 
0.180 
0.173 
0.149 

0.118 
0.087 
0.081 
0.158 

-3.47 

ptN(q=al 

0.045 0.018 0.505 0.500 0.014 
0.123 0.054 0.396 0.200 0.000 
0.123 0.064 0.079 0.120 0.000 
0.117 0,070 0.016 0.072 0.000 

0.103 0.071 0.003 0.043 0,000 
0.085 0.066 0.001 0.026 0.000 
0.109 0.146 0.000 0.016 0.324 
0.294 0.512 0.000 0.023 0.662 

4.28 

PIN(3)=aI 

5.46 

(3.47 + 4.28 + 5.46) = 13.21 (0.62 + 1.22 + 6.58) = 8.42 

pClI =0.2, 

W(, )=a1 

0.62 

pr21 
=0.6, 

pc33 
=l.O 

vqq=4 

1.22 

PIN(3)=aI 

6.58 

l/Abstracted from Table 4.13 of Bechhofer and Kulkarni [1982b]. 

Note: The corresponding single-stage procedure (which guarantees exactly the 
same probability of a correct selection as P*) requires seven observations 
from each of the three populations. 
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TABLE 5.2-1' 

Monte Carlo estimates of E{N (i)} (1 < i < 5) for P* - - 

when k = 5, n = 50 for selected (pcl ~,Pc~~,~~~,Pc~~) 

Monte Carlo estimate of 
(P[,J*P[2JYm*"P[5,) A 1 

EIN(l)l EfN(2) I wyql EP(4)l EIN($ 

(0.05,0J5,0.25,0.35,0.45) 28.56 31.94 35.99 41.96 49.13 

(0.15,0.25,0.35,0.45,0..55) 25.74 29.33 34.03 39.96 49.10 

(0.25,0.35,0.45,0.55,0,65) 22.33 25.90 30.61 37.57 48.86 

(0.35,0.45,0.55,0.65,0.75) 18.99 22.16 27.02 34.91 48.79 

(0.45,0.55,0,65,0,75,0.85) 13.26 15.86 20.40 29.50 48.75 

(0.55,0.65,0.75,0.85,0.95) 5.28 6.55 9.39 17.17 48.99 

i/Taken from Table II of Bechhofer and Frisardi [1983) with results for 
E{N(5)} added. 

Note: The corresponding single-stage procedure (which guarantees exactly the 
Same probability of a correct selection as P*) 
from each of the five. populations. 

requires fifty observations 
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TABLE 5 &' . 

Monte Carlo estimates of E{N} for P* when k = 5, 

n = 10, 30 and 50 for selected (pc,I,pc23,...,pc51) 

(P[,]PP[2]'""P[5]) 
Monte Carlo estimate of E{N) 

kn = 50 kn = 150 kn = 250 

(0.05,0.15,0.25,0.35,0.45) 34.48 110.28 187.55 

(0.15,0.25,0.35,0.45,0.55) 31.54 104.81 178.16 

(0.25,0.35,0.45,0.55,0.65) 29.57 98.54 165.27 

(0.35,0.45,0.55,0.65,0.75) 26.15 89.75 151.87 

(0.45,0,55,0.65,0.75,0.85) 22.09 75.04 127.76 

(0.55,0.65,0.75,0.85,0.95) 

I 

17.46 

I 

54.40 

I 

87.38 

L/This is Table VI of Bechhofer and Frisardi [1983). 

Note: 
exactly 

The corresponding single-stage procedures (which guarantees 
the same probability of a correct selection as P*) require 

exactly n observations from each population. 
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remain equal to 0.1. While P* is only known to be optimal here for the 

p-vectors with pc5, = 0.85 and 0.95 we see that the E{N(i)) (1 5 i 5 4) 

decrease dramatically for increasing p15,, always being substantially less 

than the n = 50 required from each population by the single-stage procedure 

which guarantees the same P{CS). 

Finally, Table 5.3 shows for k = 5 and n = 10,30,50 and the 'same 

p-vectors as used in Table 5.2, how E{N) decreases as pcsl increases; 

see Remark 4.3 for an explanation of this phenomenon. Here the E{N)- 

values in any column are to be compared with the kn-value required by 

the single-stage procedure which guarantees the same P{CS}; thus, 

for example, each entry in the third column is to be compared to 

kn = 250. 

We see from Tables 5.1 and 5.2 that P* tends to sample far less 

frequently on the average from the inferior populations than it does from 

the superior populations; this is highly desirable in clinical trials. 

Table 5.3 shows that E{N) decreases as the pcil (1 1.i 5 5) increase; 

this is highly desirable in vendor selection where most of the p 
Ci 3 

(1 5 i i 5) tend to be large. The results cited in these tables are 

typical of those given in the tables of Bechhofer-Kulkarni [1982b] and 

Bechhofer-Frisardi 11983). 

Remark 5.1: General methods for estimating and bounding E{N(i)} (1 L i 5 k) 

and E{N) for pk are given in Jenriison [1984]; these improve on earlier 

results given in Bechhofer'and Kulkarni [1982b]. 
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6. Concluding remarks 

We have demonstrated conclusively that P has highly desirable 

performance characteristics. Very substantial savings in E{N} can be 

realized if pk is used in place of the Sobel-Huyett single-stage 

procedure with both achieving the same P{CS}; these savings increase as 

the pi-values (1 L i 5 k) increase. In addition P* samples from the 

inferior populations far less than from the superior ones thus making it 

particularly attractive for clinical trials. Finally, we note that from a 

practical point of view, P* is very easy to carry out, and no special 

tables are needed for its implementation. 
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Abstract 

The bounds of Boyd (1959) and Soms (1980a, 1980b) for the tail areas 

of the normal and t-distributions are used to obtain a new method of 

evaluating the tail areas, The absolute and relative errors and numerical 

examples are given. 
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1. The Method 

We begin by introducing notation and stating the mal.n results of Boyd 

(1959) and Soms'(1980a, 1980b). Boyd (-1959) showed that if 

1 

c)(x) = (ta)-Texp( -x2/2), e F(x) = l; $(t)dt , 

and Rx = T(x)/@(x), x >,O, *then 

p(xSYh,in) < Rx ' P('* ' ) ) 
max 

where p(x,y) = (y + l)/[(x' + (2/n)(y f 1)2)2 t yx.), y 
max 

= 2/(F-2), 

Ymin 
='IT- 1, and the bounds are the best possible in the class 

tP(x,Y),Y ' - 11. This is also discussed in Johnson and Kotz (1970, Ch. 33). 

Soms (1980a, 1980b) extended the above results and showed that if for arbitrary 

real k > 0 and x > 0, 

F,(x) = l-Ft.(x) 
\ = 1; fk('t)dt, 

R&x) = T,(x)/[(l+x2/k)fk(x!l a 

for k >' 2, Ymax = 4c$(l-4cE) and ymin = 
k 

2(kt2)c; 
- 1, and for 

k < 2, ymin and Y,,,ax are interchanged, 

a nd 

P(X,Y) q 
1 -!Y 

(,2,4Cz,(11.Y)2)'/2,YX ' 5CI 



then 

P(x,Ymin) ' Rk(x) ' p(x>Ymax) 9 

or equivalently, 

2 

(1+$)fk(x)P(x3Ymin) "k(') ' (1+)fk(X)P(x9Ymax) 3 

and the bounds again are best in the same sense as for the normal. 

It was also shown there that if k = 2, ymax = ymin = y2 and Rk(x) = p(x,y,). 

The numerical properties of these bounds are discussed in the above 

references. The important fact to be noted here is that the bounds control 

both absolute and relative error. Using the bounds as a starting point 

we now develop a simple method of evaluating normal and t-tail areas that 

controls both absolute and relative error, as opposed to the usual methods, 

which generally only control absolute error. 

We consider estimates of the tail area of the form 

( $$$)P(x3Y,in)$(X) + (l - ~)P(x.v,,,)0(x) 

for the tail area of the normal and 

( $$)P('97,in)fk(') + (l - $)P(XJ,,,)fk(X) 

(1 -1) 

(1.2) 

for the tail area of the t. We want the estimates to lie between the upper 

and lower bounds for the tail area and be strictly decreasing functions 

of x and therefore impose the added restrictions that 

bc > ad 
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and 

0-c a+bx 
----cl , 

- c+dx - 
all x > 0. - 

Since f(0) = $, we may, without loss of generality, assume that c 

so our weight functions f are of the type 

f(x) = +$$ ) 

q 1 and 

where 0 -C a < I, d > 0, bc > ad, and 
b 

- d az 1. We then seek that 

(f-3) 

particular choice of f which minimizes the absolute error. A direct computer 

search led to 

f(x) = 
.71x 

1+.71x 

for the normal and 

bkx 
f(x) = ,+bkx I 

bk = .70 + 1.82/k - .2/k' , 

(1.4) 

(1.5) 

(1.6) 

for the t, where, as noted before, k is the degrees of freedom. (1.6) 

was obtained by finding the optimal constants for k = 25, 10, 5, 3, 1.5, 1, .5 

and fitting a regression line to them. However, in the interests of simplicity, 

for k 5 2, we,did not interchange vmin and ymax and so(1.5) and (1.6) are 

understood to apply for all k with ymin and ymax defined as for k > 2. 

Numerical evidence indicates that, at least for k = 1, the above optimal 

52 



estimate is still a decreasing function of x. 

The maximum absolute and relative errors of the optimal estimates are 

remarkably constant over the range 1 < k < m and hence we only give the 

normal figures. For (1.4), the maximum absolute error is .66-,:lO 
-4 

and the 

maximum relative error is .97:,:10V3. We emphasize once more, that, unlike 

the usual methods, which generally control only absolute error, the above 

controls both absolute and relative error and hence can be used to calculate 

ordinary and Bonferroni descriptive levels and ordinary and Bonferroni 

percentiles. 

As a check, we calculated the standard textbook table of the normal, 

given, e.g., in Brown and Hollander (1977) and found at most a difference 

of 1 in the fourth decimal place. We also compared the small normal percentiles 

given in Abramowitz and Stegun (1965, p. 977) to the ones obtained from (1.4) 

and after rotinding both to three decimal places found that there was at most 

a difference of 1 in the third decimal place. Similar results apply to the 

L. 

2. Concluding Remarks 

We have given a method of calculatino normal and t-tail areas which contra 

both absolute and relative errors. The listings of the short FORTRAN prcgrams 

are available on request from the author. Preliminary results indicate that 

it is possible to improve or; the accuracy of the approximations here described 

at a modest increase in complexity and these results will be reported shortly. 

1s 
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THE DESIGN OF A QUANTAb RESPONSE EXPERIMENT: 
AN EMPIRICAL APPROACH 

Refik Soyer 

1. INTRODUCTION 

The.LJ.S. Army Kinetic Energy Penetrator problem has been de- 

scribed by Mazzuchi and Singpurwalla (1982), henceforth MS. Their 

objective was to estimate the relationship between the striking velocity 

(the stimulus) and the probability of penetration of a projectile. This 

is a quanta1 response experiment in which the goal is to estimate the 

probability of response for a given stimulus. 

The strategy used to test the effectiveness of the penetrator is 

to fix an angle of fire and then to fire the penetrator at different 

striking velocities. After each firing, the outcome, success or failure, 

is recorded. 

The equipment used in testing is expensive, and thus testing is 

kept to a minimum. Typically, an experimenter is allowed a fixed number 

of tests. That is, a fixed number of copies of the penetrator can be 

tested at different striking velocities. Therefore, designing the ex- 

periment in an optimal way is an important issue. In a quanta1 response 
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problem, the investigator is also interested in estimating the striking 

velocity (stimulus), say VU , at which the probability of penetration 

(response) is cr. . Thus, the experiment should be designed in a way 

that will provide the investigator with a "good" estimate of the Vo , 

for a specified amount of testing. 

In this report, we attempt to present an approach that may be 

helpful in designing an experiment which addresses the objectives men- 

tioned above. Due to the nature of the penetrator problem, interest 

generally centers around V-C5 and V-95 , stimuli at which the prob- 

abilities of response are 0.05 and 0.95 , respectively. In our anal- 

ysis, we will focus attention on the former. 

2. AN OUTLINE OF THE APPROACH 

Suppose that the experimenter is allowed to test k copies of 

the penetrator at k distinct levels of the stimuli. Our goal is to 

select the k distinct levels of stimulus in a way that will provide 

us a "good" estimate of Veo5 . 

To estimate V,05 , we first estimate the response curve based 

on the k distinct firings. The approach discussed in MS is adcpted. 

Let Vl < V2 ( . . . ( Vk be k distinct levels of the stimulus. 

Since our aim is to select these k distinct levels in an "optimal" 

way, different designs have to be considered in the analysis. Because 

actual testing under the various designs is not practically feasible, 

our analysis is based on a simulation. 
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2.1 Simulation of the Responses 

The outcome of a test at Vi is described by a binary variable 

'i , i = 1,2,,..,k , where Xi = 1 if the target is defeated and Xi = 0 

otherwise. To simulate the outcome Xi of a test at stimulus Vi , we 

assume that we know the "true" probability of response at Vi , 

i = 1,2 , * * * , k. 

Let Vl < V2 < . . . < Vk be the selected levels of stimulus for 

the experiment; then (Vl, V2, . . . . Vk) is the selected design. Let 

R(v) be the "true" response curve; the response curves considered here 

are cumulative distribution functions. Thus, the true probability of 

response p. at stimulus V 
1 i is R(Vi) . Next we generate a random 

variable, U. 1 ' 
from a uniform distribution over (0,l) and set X i = 1 

if Ui 6 p. , and 1 xi=0 if Ui>P. . 
1 

Thus the outcome for a given 

design is a k-dimensional vector of O's and 1's. 

Once X = (Xl, X2, ..';, Xk) is obtained, the probabilities of 

response, p.'s , i= 1 1 ,-mm, k , can be estimated using the approach 

discussed in MS. 

2.2 Estimation of Vmo5 

To estimate the probability of response, pi , for each Vi , 

i = 1,2 I"., k , we assign a Dirichlet as a prior distribution for the 

successive differences PI, P.95’ *'*, Pk-Pk,_1 and the modal value of 

the joint posterior distribution is's Bayes point estimate of 

(P1.“‘.Pk) * The computation of the modal value of the joint posterior 

distribution necessitates the use of an optimization algorithm; this is 

described by Mazzuchi and Soyer (1982). 
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The specification of the prior parameters of the Dirichlet 

distribution is also discussed in MS. 

Once estimates of the pi's are obtained, an estimate of V.05 

can be obtained by constructing an estimated response curve. The esti- 

mated response curve is a plot of the levels of stimulus V. , versus 1 

the si's , the estimated probabilities of response, i = 1,2 ,*a*, k. 

Once such a plot is obtained, the interpolation procedure described in 

MS is used to estimate V.05 . 

Specifically, for the estimation of V.05 , we first see if there 

is an observed stimulus, V. 1 ' for which p"i = 0.05 . If so, then V i 

is the estimate of 

say V. and V 1 i+l 

Since the response 

joining the points 

Vo5 . If not, the pair of observational stimuli, 

, for which fii < 0.05 < p^i+l , are determined. 

curve is increasing, the straight line segment 

0, p”,, . . . , . . . , 6,s 1 , will be an in- 

creasing function of i . We can find the value of the stimulus, say 

to5 ’ vi ( Tao5 < vi+1 , for which p^ = 0.05 (as indicated in Figure 1). 

2.3 Comparison of Designs 

The goal of our analysis is to select a design, (Vl,...,Vk) , 

which will provide a "good" estimate of Vmo5 . 

In order to determine an optimal choice of the k distinct 

levels of stimulus, we consider different designs, and first obtain an 

estimate of V .05 for each design. Let (Vi, ' . . . . Vi) denote design 

j ; the superscript j indicates a particular design. Once a j is 

chosen, we obtain 5 j = ($, ..', XL) using the approach discussed in 
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Probability 1 
of Response 

0.25 

0 Iv 
i-t1 'k Level of 

=0 
Stimulus 

i 

Figure 1.‘ Interpolation procedure. 

Section 2.2. Then via the estimated response 

mate of V .05 , say. OJ .05 ' Since the "true" 

curve, we obtain an esti 

response curve is assumed 

to be known, the estimate can be compared with the true value of 

"-05 * 

If the above procedure is repeated for a different design, a 

different response curve is estimated. The various estimated response 

curves provide us with different estimates of V .05 ' and we need to 

determine which of the designs gives us estimates which are closest to 

v.05 ' Note that, since the outcome Xj = (Xi, . . . . 4) for design j 

is obtained by simulation, different replications of $ can be ob- 

tained by using different seeds in the simulation. 
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Let N be the number of replications which are analyzed for de- 

sign j . For each replication of gJ , a different response curve is 

estimated and therefore a different estimate of V 
-05 , say 

is obtained. Since we know the true value 

error (II%) for design j is computed as 

MSEj = F (i!05(e) - 
it=1 

of V .05 ' the mean squared 

2 
v.05) * 

The MSE for each design can be obtained and a comparison of the 

MSE's provides us with a criterion for selecting a good design. The 

design with the minimum MSE is a good design for a known response curve, 

say Ri(v) . It is possible that a design which is good for Ri(v) may 

not be good for Rk(v) , i # k . This possibility has also been consid- 

ered in our analysis. 

3. SUMMARY 

The approach we presented in Section 2 is applied to some simu- 

lated data in the next section. 

Three different "true" response curves are selected. These 

curves are chosen in such a way that they will provide us with different 

values of V .05 * 

The first response curve is specified via a Weibull distribution 

function, 

, where V .05 = 22 . 

The second is via a lognormal distribution function, 
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log v. - 4.50 
R2(vi) = Q 

e L 
0.33 I , where V 

,05 
= 52 

and Q denotes the standard normal distribution function. 

The third response curve considered is also a lognormal distribu- 

tion function,'which gives V 
.05 

= 10 ; that is, 

R3(vi) = Q 
loge vi - 3.3 

0.6 1 . 
Five different designs are selected and analyzed. 

Design 1 -- the k observations are distributed evenly over the 

entire interval of the range of testing, say I . 

Design 2 -- all the k observations are concentrated on the 

left-hand half of I . 

Design 3 -- all the k observations are concentrated in the 

center of I . 

Design 4 -- all the k observations are concentrated on the 

right-hand half of I . 

Design 5 -- the k observations are sequentially obtained in 

three different phases. 

The value of k is (arbitrarily) chosen as 12, and due to the 

expense of simulation, ten different replications of XJ are considered. 

The MSE's for each design based on the ten replications are com- 

puted, on the basis of which it is felt that Design 3 is a suitable de- 

sign for the estimation of V 
-05 * 
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4. APPLICATION TO SOME SIMULATED DATA 

The three "true" response curves discussed in Section 3 are 

analyzed separately in this section. These response curves are illus- 

trated in Figures 2, 3, and 4. A replication, simulated from each of 

these response curves, is presented in the Appendix for illustration. 

We assume that the probability of a response at a striking veloc- 

ity of 300 is almost 1. Thus we make an arbitrary choice for our best 

prior guess of pi , say p: , by letting p; = ,l - exp[-0.0307 Vi1 . 

The prior parameters are chosen as described in MS. In our analysis the 

smoothing parameter is chosen as B  = lF, l 

The five different designs presented in Section 3 will be used in 

the analysis. In the first four designs, the penetrator is tested in a 

single phase. In Design 1, the 12 observations are taken equally spaced 

over the entire range of testing, (0,300). In Design 2 all 12 observa- 

tions are taken equally spaced on the left-hand half of the interval 

(0,150). In Designs 3 and 4 the 12 observations are taken equally 

spaced in the center, and on the right-hand half of the interval, 

respectively. 

The sequential design, Design 5, consists of three phases. In 

the first phase, six observations are taken equally spaced over the 

entire range of testing. Ten different replications of the outcome 

vector, g , are examined and the experimenter tries to identify two 

regions: one region where the outcome is zero and another where the 

outcome is one most of the time. Once these two regions are determined, 

the experimenter has knowledge about the region where the response is 
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most likely to change. In phase 1 of the experiment a new response 

curve is also estimated, and this curve provides the prior values of 

Pi's for the second phase. In the second phase, three observations are 

0 40 80 120 160 200 240 280 Level of Stimulus 

Figure 4. Lognormal response curve II. 

taken, equally spaced over the region where the response is most likely 

to change, as is indicated by phase 1 and a new response curve estimated 

based on these observations and the prior (the posterior from phase 1). 

In the final phase of the experiment, the remaining three observations 

are taken on the left-hand end of our best guess based on phase 2 and a 

new response curve is estimated using these observations and the prior 

(the posterior from phase 2). The estimate of Vmo5 is obtained by 

using this updated response curve. 

The outcomes of the five different designs are presented in the 

Appendix, Tables A.1 - A.3. 
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4.1 Analysis for the Weibull Response Curve 

The first response curve that is considered is a Weibull distribu- 
. 

tion function for which V 
.05 

= 22 . The outcome vector, zJ for 

j = 1,...,4 , is simulated using this response curve. Ten replications 

of the outcome vector are obtained for each design. One of these repli- 

cations is presented in Table A.1 of the Appendix. The procedure that 

was discussed in Section 2.2 is adopted and the estimates of V .05 are 

obtained. The "true" response curve and the estimated response curve 

are plotted in Figures 5, 6, 7, and 8 for one replication, and presented 

in Table A-1. The estimates of V.05 are obtained from these figures. 

For Design 1, the estimate of V is obtained as 
^l 

.05 I V .05 
= 4 from the 

estimated response curve in Figure 5. Similarly, the estimates of Vho5 

for Designs 2, 3, and 4 are obtained as ?fo5 = 4 , ?To5 = 10 , and 

TO5 = 16 . 

For the sequential design, the response curve that is estimated 

in the first phase is presented in Figure 9 for the replication presented 

in Table A.l. The response curves estimated in phases 2 and 3 are 

plotted in Figures 10 and 11, respectively. The estimate of Vmo5 is 

obtained from Figure 11 as 
A5 V 

.05 = 8 . 

Once the 6f05(R) values are obtained for R=l ,...,lO for 

Design j , MSEJ can be computed as: 

MSEl's for the Weibull response curve are presented in Table 1. 
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Table 1. MSE's for the 
Weibull Response Curve 

Design MSE 

1 360.1 

2 320.2 

3 126.2. 

4 36.0 

5 isequential) 196.8 

The minimum MSE is obtained when Design 4 is selected; that is, 

when all k observations are concentrated in 

interval of the range of testing. The second 

when all k observations are concentrated in 

of the range of testing. L 

the right-hand half of the 

lowest MSE is obtained 

the center of the interval 

4.2 Analysis for the Lognormal Response Curve I 

The second response curve is a lognormal distribution function 

where V l 05 = 52 l Again ten outcome vectors, XJts , are simulated for 

each design. The response curves are constructed and cJts are ob- 

tained. The estimated response curves can be observed from Figures 12, 

13, 14, and 15 for Designs 1, 2, 3, and 4, respectively, for a single 

replication. Al A2 The estimates of Vao5 are Vao5 = 4 , vmo5 = 5 , 

VT,, = 11 , and 64,, = 18 from the corresponding figures. 

For the sequential design, Design 5, the response curves esti- 

mated in phases 1, 2, and 3 are plotted in Figures 16, 17, and 18, re- 

spectively. A5 The estimate of Vao5 is obtained as Veo5 = 9 from Figure 18. 
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Table 2. MSE's for the 
Lognormal Response Curve I 

Design MSE 

1 2313.7 

2 2209.0 

3 1714.2 

4 1142.8 

5 1981.1 

The MSE's computed for the lognormal response curve are presented 

in Table 2. As we can observe, the minimum MSE is obtained when Design 

4 is selected. The second lowest P!SE is obtained for Design 3. 

4.3 Analysis for the Lognormal Response Curve II 

The third response curve is also a lognormal distribution func- 

tion, where V .05 = 10 l The outcome vectors are simulated and the 

response curves are estimated as in the previous sections. The ?fo5 

values are obtained using the estimated response curves for each design. 

The estimated response curves can be observed from Figures 19 - 22 for 

Designs 1, 2, 3, and 4 for a single replication. The estimates are ob- 

-2 A3 
tained fl,, 2 V,05 3 Vao5 10 and 

-4 
as = = = = , , , V .05 19 . 

For Design 5, the estimated response curves for phases 1 - 3 are 

pres,ented in Figures 23 - 25. The estimate of Vao5 is obtained as 

A5 
v.05 = 3 .for the sequential design. 
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Table 3. MSE's for the 
Lognormal Response 

_ _, .-.. ._, Curve II 

Design -- MSE 

1 53.7 

2, 55.0 

3 0.4 

4 144.0 

5 46.8 

The MSE's for the second lognormal response curve are presented 

in Table 3. We can observe from Table 3 that the minimum MSE is ob- 

tained for Design 3, where all 12 observations are concentrated in the 

center of the interval of the range of testing. The MSE obtained for 

Design 4 is the highest among them all. This indicates that the form of 

the "true" response curve affects the results significantly. 

5. CONCLUSION 

The application of our approach to simulated data from three 

types of response curve indicates that the shape of the "true" response 

curve is a significant factor in the evaluation of the estimate of V 
.05 

In real life, the "true" response curve is never known; therefore the 

experimenter should select his design based on his prior knowledge of 

the problem. Depending on the shape of the "true" response curve that is 

unknown to us, the V .05 level might be underestimated or overestimated. 
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for il given deSIL&n, WlLLCh is Ulidl2Sir!L(ble. The results 0bl;ained ii+ 

Section 4 ind:Lca~e thaC llesifit1 2, where all k obscrvalzlops are concen- 

trated :Ln the left-hand half of Lha inl;crval of the range of testing, 

has u tencloncy to undercs tillli.lLl? v , o5 On Lhc other hand, LIc~iign 4 bus 

L1 tandency to overestimate v 
.05 

For the response curve that: i,S'COn- 

siderrrd :Ln 8ccl;;Lun 4',3, th:Ls ci.~u:;cd u Ihigh MSU for Des-i&n 4, 'l'hg poasi- 

b:L:Lity of Large di6crcprrnc:I.o~: for Che6e two dosQn6 makes them GndaFs-lr- 

ill) Il. ( !  l Tllr! soMu:l.tu of s&L:i.u1.I 4 d.sa ind'lcaro thal: IIusiyn 3, where r!lJ 

k ob6arvntiona ,&ra conccnrrnccd in the center, give6 better cstimntcs 

oli v .05 in ~ollarul. ‘l’hu tl-l.~;(:rc!l;unC~.ctr duo to 0verot;l:irnation Or undcr- 

ustinintion are not large, 'Uhl~ nralte~ Design 3 more de6irablQ than the 

llowevcr , one 6hould note that there is the difficulty of de!~er- 

the experiment has to be performed in a single phase, thi6 tegion can 

be dctermincd by ueiny prrt;~: :Lr~lior~uation available to Lho invcHL:iyaco-r. 

Another po66ibility i6 to chuut;c r;hu middle portion of the inl;orvol of 

On the basis of Lhe,anelysie made, we can conclude thai a design 

whore !Au ob6ervaCions.ora concurrt~&a~ed in 'a re&lon Chat provides ~lrr? 

experimenter with more inforlllacion is 6uiLablo for this probleui. '1'119;'L" 
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Table Al. Data Simulated from the Weibull Response Curve 

Design 1 Design 2 Design 3 Design 4 Sequential Design 

Level of 
Stimulus Response Level of Response Level of 

Stimulus Stimulus Response Level of 
Stimulus Response Level of 

Stimulus Response 

10 0 10 0 106 0 202 1 

35 0 18 0 114 1 210 1 

60 1 26 0 122 0 218 1 

85 0 34 0 130 1 226 1 

110 1 42 0 138 1 234 1 

E 
135 1 50 1 146 1 242 1 

160 1' 58 1 154 1 250 1 

185 1 66 1 162 1 258 1 

210 1 74 0 170 1 266 1 

235 1 82 1 178 1 274 1 

260 1 90 1 186 1 282 1 

285 1 98 1 194 1 290 1 

Phase I: 
25 0 

75 1 

125 1 

175 1 

225 1 

275 1 

Phase II: 

80 1 

100 '1 

120 0 

Phase III: 

20 0 

40 0 

60 0 



Design 1 

Table AZ. Data Simulated from the Lognormal Response Curve I 

Design 2 Design 3 Design 4 Sequential Design 

Level of Response Level of 
Response Level of Level of 

Stimulus 
Level of 

Stimulus Stimulus Response 
Stimulus Response Stimulus Response 

10 0 10 0 106 b 202 1 

35 0 la 0 114 1 210 1 

60 0 26 0 122 1 218 1 

85 0 34 0 130 1 226 1 

110 1 42 0 138 1 234 1 

135 1 50 0 146 1 242 1 

160 1 58 0 154 1 250 1 

185 1 66 0 162 1 258 1 

210 1 74 0 170 1 266 1 

235 1 a2 0 178 1 274 1 

260 1 90 1 186 1 282 1 

285 1 98 1 194 1 290 1 

Phase I: 

25 0 

75 0 

125 1 

175 1 

225 1 

275 1 

Phase II: 
80 0 

100 1 

120 1 

Phase III: 

20 0 

40 0 

60 0 



Design 1 

Table A3. Data Simulated from the Lognormal Response Curve II 
_I----- - 

Design 2 Design 3 Design 4 Sequential Design 

Level of 
Stimulus Response Level of Response Level of 

Stimulus Stimulus Response Level of 
Stimulus 

Response Level of 
Stimulus Response 

10 0 10 0 106 1 202 1 Phase I: 
35 1 18 0 114 1 210 1 25 0 
60 1 26 1 122 1 218 1 75 1 
85 1 34 1 130 1 226 1 125 1 

110 1 42 1 138 1 234 1 175 1 
135 1 50 1 146 1 242 1 225 1 
160 1 58 1 154 1 250 1 275 1 
185 1 66 1 162 1 258 1 Phase II: 
210 1 74 I 170 1 266 1 30 0 
235 1 82 1 178 1 274 1 50 1 
260 1 90 1 186 1 282 1 70 1 

285 1 98 1 194 1 290 1 Phase III: 
5 0 

15 0 

25 1 
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INFORMATIVE QUANTILE FUNCTIONS AND 
IDENTIFICATION OF PROBABILITY DISTRIBUTION TYPES 

Emanuel Parzen 
Department of Statistics 

Texas A&M University 

ABSTRACT. A problem of great importance to statistical data analysts is 
quick identification of possible probability distributions for observed data, 
and classification of tail behavior of probability distributions. This paper 
discusses the informative quantile function IQ(u) = {Q(u) - Q(0.5)) i 
2IQCO.75) - Q(O.25)1, and its use to identify probability models for observed 
data and its use to provide concepts of "representative distributions" which 
illustrate the different types of shapes and tail behavior that real 
distributions can have. 

_KEY WORDS: Quantile data analysis, informative quantile function, tail 
exponents, Weibull distribution, hazard function. 

1. QUANTILE AND SAMPLE QUANTILE FUNCTIONS. The probability distribution 
of a random variable X is described in general by its distribution function 
F(x) = Pr[X<x], --co<x<m. When F is continuous it is described by its 
probability density f(x) = F'(x), --m<x<m * 

Quantile data analysis (Parzen [1979]) describes a probability distribution 
by 

quantile function Q(i) = F-'(u), O<u<l ; -- 

quantile density 

density-quantile 

score function 

function q(u) = Q'(u), O<u<l ; 

function fQ(u) =f(F%)) = {q(u)>-', O<u<l ; -- 

J(u) = -(fQ)'(u) , O<u<l . -- 

Let X,,X7,...,Xn be a data set. To gain insight into the processes 
generating-the data ;je form the sample distribution function F(x) and sample 
quantile function Q(u). In terms of the order statistics Xln 2 X2n 5 . . . <X 
of the sample they are defined by - nn 

F(x)=; ,x. 
Jn- ' x < '(j+l)n 

&I, = Xjn , 5 j <u < - 
-n 

; 

In practice we prefer to use a sample quantile function Q(u) which is piecewise 
linear between the values 

Research supported by the U.S. Army Research Office Grant DAAG29-83-K-0051. 
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i(& =x jn ’ j=l ,...,n. 

For graphical data analysis, 
IQ(u), 

we transform Q(u) to a normalized ver_sion 
called the sample informative quantile function. The value of IQ(u), 

as u tends to 0 and 1, provide diagnostic measures of the type of probability 
distribution. An important classification of "type" is in terms of tail 
exponents (defined in section 5, but its concepts are used in the example in 
section 2). 

2, UNITIZED AND INFORMATIVE QUANTXLE FUNCTIONS. A normalization of,the 
quantile function which depends only on its shape (and is independent of location 
and scale) is 

Q,(u) = 
Q(u) - u’l 

5 

where u 1 = Q(O.5), ol = Q'(O.5) = q(0.5). We call Q,(u) the unitized quantile 

function. It is the original quantile function normalized to have value 0 and 
slope 1 at u = 0.5. 

One can distinguish three kinds of estimators of parameters [such as pl 
and u 1: fully non-parametric [denoted 61 and 8i], fully parametric [denoted 
t an& 6 ] and functional [estimators fi 
sAoothed it&tile functions Q(u) obtained 

and 6 
ii k 

which are the parameters of 
y smoo hing the raw or fully 

non-parametric estimator Q(u)]. The shape of Q(u) must be inferred before one 
can efficiently estimate p and o using fully parametric (or robust parametric) 
estimators. 

A fully non-parametric estimator of Q(0.5) is Q(O.5). A fully non- 
parametric estimator of q(0.5) is more difficult to define. We therefore 
consider quick and dirty approximators of q(0.5) of the form 

uP = 
Q(0.5 f p) - Q(0.5 - p) 

2P 

where O<p<O.5. We usually take p = 0.25; then we approximate q(0.5) by -- 

oo.25 = 2{Q(O.75) - Q(O.25)) , 

which provides a "universal" scale parameter. 

An alternative normalization to Q,(u) is 

Q(u) - Q(0.5) 
IQcu) = 2{Q(O.75) - Q(O.25)) ' 

which we call the informative quantile function. It provides both graphical and 
numerical statistical diagnostics. 

Graphically, we plot the truncated informative quantile function 
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TIQ(u) = -1 if IQ(u) i -1 , 

c lif IQ(u) > 1 , 

= 
IQ(u) if [IQ(u) 1 < 1 . 

Numerically, we report the values of IQ(u) at u=O.Ol, 0.05, 0.10, 0.25, 0.75, 
0.90, 0.95, 0.99. 

Truncating the values of IQ(u) in our graphics enables us to see the "middle" 
of the distribution. The ends (tails) of the distributions are described 
numerically by the extreme values of IQ(u). 

For convenience in seeing at a glance in a plot of IQ(u) its behavior, 
especially as u tends to 0 and 1, we plot on the same graph the IQ(u) of a 
uniform distribution (it is a straight line with values -0.5 and 0.5 at 
u = 0 and 1 respectively). An empirical example is given in Section 4. 

Example: Super Short Distributions. An important example of a super-short 
distribution (a<O) is X = -cos TU where-U is uniform ]O,l]. Since -cos TTU is 
an increasing function of u, the quantile function of X is Q(u) = -cos mu, 
with quantile density and density-quantile 

q(u) = 
sin nu 

T fQ(U> = sin71=u 

As u+O, fQ(d s u 
-I 

soa =-1. The distribution is symmetric, in the sense 
that q(l-u) = q(u); thergfore ~1 = -1. The interquartile range IQR = v!? ; 
the informative quantile function is IQ(u) = (-.35) cos VU. Therefore IQ(O) = 
-.35, IQ(l) = .35. These values are taken as typical values of super-short 
distributions. 

Outlying data value interpretation of IQ(u). The sample informative 
quantile function is defined by 

IQ(u) = {Q(u) - 4(0.5)] :A ;I 

where u1 = 2 IQR and IQR = Q(0.75) - Q(0.25). The truncated sample 
informative quantile function T?Q(u) is defined to be IQ(u) truncated at +l. - 

Hoaglin, Mosteller, Tukey (1983, p. 39) introduce techniques for 
identifying outlying (or outside) data values as those lying outside the 
interval 

(Q(0.25) - (1.5) IQR, Q(O.75) + (1.5) IQR) 

We regard as outlying data values those lying outside the interval 

(G(O.5) -2 IQR, $0.5) f 2 IQR) 

The fraction of data values which are outlying are represented on the plot of 
TIQ(u) as values truncated to +l. 
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3. TA3LES OF TAIL VALUES OF INFOWTIVE QUANTILE FUNCTIONS. One use of- 
the informative'quantile function IQ(u) of a sample is to determine quickly 
probability distribution that might fit the sample. One can readily distinguish 
whether the data could be fit by a normal distribution or an exponential 
distribution [and thus determine the "probability of success" if one were to 
apply a more formal goodness of fit test]. However no standard parametric 
model may fit the data, and statistical data analysis must identify significant 
features of the data "non-parametrically." 

Statistical scientists-are seeking to define concepts which illustrate the 
different types of shapes and tail behavior that real distributions can have. 
Hoaglin, Mosteller, and Tukey (1983, p. 316) use language such as "neutral 
tailed (Gaussian)" and "stretch-tailed (Cauchy)." To describe the notion of 
tail weight, they write that it" expressed how the extreme portion of the 
distribution spreads out relative to the width of the center." As an index of 
tail behavior, they introduce (p. 323) 

&o. 9) - Q(O.l>l + (9CO.75) - ;(0.25)] = 2{19(0.9) - $0.1)) 
u 

As indices of tail behavior, this paper proposes IQ(u) at u = 0.01, 0.05, 
0.1, 0.9, 0.95, 0.99. The true values of these indices for various familiar 
distributions are given in the tables. These indices are useful for 
exploratory data analysis of what's unusual or extraordinary about a data set, 
and help provide estimates of the tail exponents and tail types of distributions 
that might have generated the data. , 

TaLl Values of Informative Quantile Function IQ(u) 

Standard Distributions 

* = Approximate value of u at which IQ(u) - 1. 

Distribution * u .Ol .05 .10 .90 .9s .99 

Normal “_ -.862 -.610 -.475 
Exponential .9s -.311 -.292 -.268 
Logistic .99 -1.046 -.670 -.soo 

Double Exp .9? -1.411 -.a30 -.568 
Cauchy .92 -7.95s -1.578 -.769 
Extreme Value -- -1.346 -.828 -.599 
Log Normal .91 -.310 -.278 -.278 
Super Short -- -.353 -.349 -.336 

.475 .610 .862 
,732 1.048 1.780 
.500 .670 1.046 
.580 .830 1.411 
.769 1.578 7.954 
.382 .46S 0.602 
.89S 1.438 3.178 
,336 .349 0.353 
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Tail Values o.f Informative Quantile Function IQ(U) 

Weibull Q(u) - Ilog (l-u)'l}' 

* = Approximate value of u at which IO(u) E 1. 

6 * 

. . . 

U’ .Ol .05 .lO .90 .95 .99 

.1 -* -1.107 -.735 -,550 .409 .SOS -668 
.2 *_ -.921 -.655 -.506 .438 .549 .743 
.3 -- -.777 -.585 -.466 .468 ,595 .826 
.4 -- -.662 -.525 -.430 .500 .646 -919 
.5 1.0 -.571 -.473 -.39G .534 ,701 1.024 
.6 .3a -.49a -.427 -.366 ,570 .760 1.142 
.7 .Y7 -.437 -.387 -.33a ..607 .a24 1.275 
.a .96 -.38a -.351 -.312 .647 .893 1.424 
.9 .9s -.346 -.320 -.295 ,689 .967 1.592 

1.0 .34 -.311 -.292 -.273 .732 1.048 1.780 

1.1 .93 -.2a1 -.267 -.252 .778 1.135 1.993 
1.2 .93 -.255 -.245 -.233 .a27 1.229 2.232 
1.3 .92 -.232 -.225 -.216 ;a78 1.331 2.502 
1.4 .91 -.212 -.207 -.200 ;931 1.449 2.806 
1.5 .90 -.195 -.191 -.185 .9a7 1.559 3.148 
1.6 .89 -.179 -.177 -.172 1.046 1.687 3.54 
1.7 .a9 -.165 -.163 -.159 1.107 1.825 3.969 
1.8 .aa -.153 -.151 -.147 1.172 1.974 4.459 
1.9 .aa -.141 -.140 -.137 I. 240 2.135 5.012 
2.0 .a7 -.131 -.130 -.12a i.311 2.309 5.635 
2.1 .a7 -.121 -.121 -.119 1.356 2.497 6.338 
2.2 .a6 -.112 -.112 -.lll 1.464 '2.700 7.130 
2.3 .a6 -.104 -.104 -.103 1.546 2.919 9.023 
2.4 .a5 -.097 - ,097 -.096 1.633 3.155 9.031 

Tail Values of Informative Quantile,Function IQ(u) 

Lognormal Q(u) - exp X@-'(u) 

* - Approximate value of u at which IQ(u) - 1. 

x * 

--I-- 
.5 

1 
1.5 
2 
2.5 

‘3 
.3.5 
4 
4.5 
5 
5.5 
6 
6.5 
7 
7.5 
a 

u- ,Ol ..05 .lO .90 .95 .99 

.96 -.500 
.92 -.310 
.a8 -.203 
.a6 -.138 
.a4 -.036 
.a2 -.067 
.81 -.048 
.a0 -.034 
..a0 -.024 
.79 -.017 
.79 -.012 
.79 -.009 
.78 -.006 
.7a -.004 
.7a -,003 
.7a -.002 

-.408 -.344 
-,278 -.246 
-.192 -.179 
-.134 -.I28 
-.094 -.092 
-.067 -.066 
-.047 -.047 
-.034 -.034 
-.024 -.024 
-.OlJ -.017 
-.012 -.012 
-.009 -.009 
-.006 -.006 
-.004 -.004 
-.003 -.003 
-.002 -.002 
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.653 

.895 
1.223 
1.666 
2.266 
3.077 
4.175 
5.661 
7.673 

10.398 
14.089 
19.087 
25.858 
35.029 
47.452 
64.280 

.928 
1.438 
2.260 
3.594 
5.761 
9.284 

15.012 
24.322 
39.454 
64.041 

103.988 
168.886 
274.315 
445.586 
723.814 

-- 

1.600 
3.178 
6.655 

14.449 
32.083 
72.169 

163.511 
371.883 
847.538 

_d 
-- 
-- 
-- 
** 
-- 
-- 



4. EXAMPLE OF SAMPLE INFORMATIVE QUANTILE ANALYSIS. A data set 
extensively discussed in a recent book on graphical methods of data analysis by 
Chambers, Cleveland, Kleiner, and Tukey (1983) consists of Stamford (Corm.) 
Monthly Maximum Ozone levels. Sample size n=136, sample median 111 = 80, sample 
mean p = 89.7, twice interquartile range 6 = 147.5, and standard deviation 
3 = 52.1. Rather than-reporting the original data X1,.--,X, we report the 
normalized values (X-j-pl) + 51 which are used to plot IQ(u); a plot of Q(u) is 
given on p. 15 of Chambers et al. Numerical statistical signals are provided 
by the tail values: 

U 0.05 .l .90 .95 

Ii (4 -.38 -.33 .61 .83 

By consulting the table of Weibull informative quantile values, as a first guess 
of a distribution to fit this data one takes Weibull with parameter B = 0.8. 
The graph of I?(u) 1 a so suggests to us that a Weibull distribution provides a 
good first approximation. How to refine this approximation is a problem treated 
by our ONESAM data analysis program. 

An alternate approach to modeling this data is to find a transformation to 
normality; one would then report as one's conclusion that cube root of Stamford 
Ozone data is normally distributed. We believe that this conclusion must be 
considered curve fitting, while a conclusion that the data is fit by a Weibull 
distribution with F3 in a specified range represents a curve fit with scientific 
insight (which may help to explain the physical mechanisms generating the data). 

BELLOXON OATA -  tCSf FOR VEIBULL (.E) 
INFORNAttYE WAHTILE -  ORIOINLC. UNGROUPED DATA. 

ORDER STATISTICS IN O”ARfERS 
*---.------.----r.---------- 

SEOUENCE 
VrtHfN 

OlMRtlLE F!RfT OUAiTEP SECOND WUARTER THIRD OUARTER 
--_-_-- -  - .--_________ ___-.-____-___ _______--___” 

1 -0.4475 -0.1102 0.0 
1 -0.4475 -0.1966 0.0 
3 10.3664 -0.1096 0.0 
4 -0.3797 -0. ,690 0.0 
5 -0.3797 -0. ,898 0.0138 
6 -0.3797 -0. ,898 O.O,JG 
7 -0.3797 -0. ,695 0.0203 
e -0.3661 -0.1424 0.0339 
9 -0.3593 -0. ,356 0.0401 

10 -0.3526 -0.1286 0.0407 
,I -0.3515 -0. I188 0.0475 
12 -0.3515 -0. to05 0.0475 
13 -0.3322 -0. ,095 0.0475 
74 -0.3322 -0.1085 o.oeto 
IS -0.3254 -0.10.6s 0.0746 
(6 -0.3254 -0.0949 0.0814 
17 -0.3,86 -0.0949 0.0949 
!B -0.1995 -0.0814 0.0649 
19 -0.2841 -0.0614 0.1220 
20 -0.2641 -0.0914 0.1280 
21 -0.2647 -0.0146 O.lZBB 
12 -0.3647 -0.00~0 0.1356 
23. -0.2847 -0.0610 0.1424 
24 -0.2647 
25 *b:2647 

-0.0610 
-0.0610 

0.1559 
0.1559 

29 *0.3047 -0.0610 0.1559 
27 -0.2712 -0.0610 0. te9a 
14 -0.1576 4.0542 0.2,cl2 
i9 
30 
31 

-0.2508 
-0.2305 
-0.2237 

-0.05-‘2 
-0.0475 
-0.0339 

0.2aii 
0.2237 
0.7309 

32 -0.2237 -0.0339 0.2916 0.91s3 
33 -0.2237 0.0 0.2644 1.0169 
34 -0.2237 0.0 0.2644 1 .oes7 

FOURTH OUARTER 
-- -___________ 

0.2647 
0.2847 
0.2663 
0. .7093 
0.1983 
0.3051 
0.3051 
0.3456 
0.3593 
0.2661 
0.3797 
0.4136 
0.4203 
0.4211 
0.4415 
0.4746 
0.4061 
0.5085 
0.6034 
0.6034 
0.6102 
0.6305 
0.6373 
0.7322 
0.7593 
0.7664 
0.6203 
0.0211 
0.6211 
0.6542 
0.0919 

102 



l.oW 

0.800 

0.600 

0.400 

0.300 

0.0(x1 

-O.DTy) 

-0.400 

-o.am 

-0.800 

-1.m 

BELLu20” OA1A - 1ESt FO1 YEIFIULL !.I) 
,HFORYAt,“E OUANTILL - ORIOINAL, UNOROUPEO DATA. 

*----------*--..-------------------------------------------oo 
I I 
i ot 
I 0 I 
I a2 I 
+ 01 
I 0 I 
I 0 I 
I I 
I 00 I 

01 t 
t 

I 
I 
1 
* 
I 
t 
I 
I 

l 

I  

t  I  

I  I  

I  t  

I  

1 

I  

I  

I  

I  

1 

I  

I  

t  

I  I  

t  I  

l I  

I  I  

1 I  

I  I  

I  
l :  

I  I  

I’ I  

I I 
I I 
+-***-*t*t--+-----~-----+----,-----*---~---.-*.----*-**“**-*--*~ 

0.0 0.1 0.1 0.3 0.4 0.3 0.3 0.1 0.1 0.9 1.0 
A3SClSSA If ” , OROtNAfl. lf row! 

Printer 
Plot of 
Truncated 
Sample 
Informative 
Quantile 
Function 
at Stamford 
Monthly 
Maximum 
Ozone 
Levels, 
n=136 

5. TAIL EXPONENTS CLASSIFICATION OF PROBABILITY LAWS. From extreme value 
theory, statisticians have long realized that it is useful to classify 
distributions according to their tail behavior (behavior of F(x) as x tends 
to + -). It is usual to distinguish three main types of distributions, called 
(1) limited, (2) exponential, and (3) algebraic. This classification can also 
be expressed in terms of the density quantile function fQ(u); we call the 
types short, medium, and long tail. 

A reasonable assumption about the distributions that occur in practice 
is that their density-quantile functions are regularly varying in the sense 
that there exist tail exponents a 0 and a1 such that, as u-+0, 

aO fQ(u) = u Lo(u) , 
"1 

fQ(l-u) = u L1 Cd 

where Lj(u) for j=O,l is a slowly varying function. 

A function L(u), O<u<l is usually defined to be slowly varying as u-+0 if, 
for every y in O<y<l, L(yu)/L(u) + 1 or log L(yu) - log L(u) -f 0. For 
estimation of tail exponents we will require further that, as k-to, 

1,' {log L(Yd - log L(u)) dy + 0 
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which we call integrally slowly varying. An examtile of a slowly varying 

function is L(u) = Ilog u -1p . 

Classification of tail behavior of probability laws. A probability law 
has a left tail type and a right tail type depending on the value of a 0 and 
al* If ~1 is the tail exponent, we define: 

a<0 super short tail 

O<a<l short tail 

U’ 1 medium tail 

a>1 long tail 

Medium tailed distributions are further classified by the value of J* = lim 
J(u): 

a=1 , J* = 0 medium long tail 

a=1 , O<J*<m medium-medium tail 

a=1 , J" = m medium-short tail 

One immediate insight into the meaning of tail behavior is provided by 
the hazard function 

h(x) = f(x) c {l-F(x)) 

with hazard quantile function hQ(u) = fQ(u) G l-u. The convergence behavior 
of h(x) as xw is the same as that of hQ(u) as u-tl. From the definitions 
one sees that h* = lim h(x) satisifies 

X-- 

h* = w (increasing hazard rate) Short or medium-short tail 

O<h*<m (constant hazard rate) Medium-medium tail 

h* = 0 (decreasing hazard rate) Long or medium-long tail 

Formulas for computing tail exponents. The representation of fQ(u) 
suggests a formula for computation of tail exponents a o and al (which may be 
adapted to provide estimators from data). 

Theorem: Computation of tail exponents 

-a 
0 = lirn 1; (lOi3 fQ(yu) - log fQ(u)) dy 

u-to 
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Equivalently 

1% fQ(t) dt - log fQ(p) 

Similarly 

a1 = lim 1: {log fQ(l-yu) - log fQ(l-u)} dy 
u+o 

= lim 1. 11 log fQ(t) dt - log fQ(l-p) . 
P+l 1-PP 

Proof: log fQ(u) = a0 log u + log Lo(u), 

1% fQ(w) - log fQ(u) = a0 log y + log Lo(yu) - log Lo(u). 

Since 1,' log y dy = -1, we conclude that 

,; flog fQ(yu) - log fQ(u)) dy = - a0 + o(u) . 

Similarly one derives formula for al. 

Because the density-quantile and quantile-density functions are reciprocals, 
we obtain similar formulas for q(u) which,may be easier to implement in 
practice: 

-a 
n(u) = u O LOW , as u-t0 , 

-a 
q(u) = (l-u) 1 L1(l-U)' as u-+1 ; 

aO = lim 1,’ flog q(p) - 1% q(u)) dy ; 
u-to 

a1 = lim Ji Ilog q(l-yu) - log q(bu)) dy. 
u-to 

Practical implementation of the foregoing estimators of tail exponents 
remains to be investigated. Related estimators are given in Mason (1982) and 
the papers referenced there. 
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On theLehmann Power Analysis for the 
Wilcoxon Rank Sum Test 

The Wilcoxon Rank Sum (or Mann-Whitney) Test is among the most useful and 
powerful of the non-parametric hypothesis tests. However, as with many hypo- 
thesis tests, when a clear alternative hypothesis and corresponding power 
analysis is not present, the practical interpretation of results using this 
test suffers greatly. This paper presents and clarifies an alternative sug- 
gested by E. L. Lehmann in 1953 (Annals of Mathematical Statistics [7]) and 
provides tables of practical use which have not previously been calculated due 
to computational difficulties. This work has recently been applied to survey 
data gathered for the US Army Logistics Center. (See reference [5].) 

When sample sizes are small, and a power analysis is not available, one may 
fail to reject the null hypothesis when the true state of nature is very 
different from what is stated in the null hypothesis. With a small sample size 
and small&, it may be impossible to reject Ho. Further, when sample sizes are 

very large, the null hypothesis may be rejected at a very small significance 
level when actually the null hypothesis is so nearly true, that it is close 
enough for all practical purposes. Taken to the extreme, with infinite sample 
sizes, the attained significance level will be zero, even when there is only a 
very small, but finite difference between Ho and the true state of nature. 

Thus significance level can be very misleading if'used alone. 

When a null and a definitive alternative hypothesis can both be stated, and 
probability distributions found under each, the results of an hypothesis test 
can be stated similarly to a confidence interval if the "point estimate" from 
the observed values falls betweenthe two hypotheses. In the case of the 
Wilcoxon Rank Sum Test, only one alternative hypothesis has been well developed 
and will be presented here. Due to the nature of this test, however, even if 
the evidence may strongly Indicate that the true state of nature is not bounded 
between this alternative and the null hypothesis, this power analysis can still 
be used to obtain a reasonable estimate of what the actual state of nature 
happens to be. (In the case of the Multiple-sample Westenberg-type .,tests of 
reference [4], an alternative must be picked such that the true state of nature 
is ind'l'cated to be bounded by the null and alternative hypotheses. Fortun- 
ately, that is not the case here, nor was it the case in reference [6], which 
is a multi-sample test.) 

Consider that the null hypothesis, Ho, of the Wilcoxon Rank Sum Test 

indicates that P(X<Y) = l/Z. That is, under Ho, any value picked at random 

from the Y population, is larger than any value picked at random from the X 
population, with probability of l/Z. Here an alternative hypothesis, HI, is 

used such that P(X<Y) = 2/3. (The exact form of HI is discussed in [7].) 

Graph 1 illustrates a possible configuration for this alternative hypothesis. 
For thfs example, consider that under Ho, all observations are taken from a 

N(r,s) distribution such as the N(5,l) shown on the left*in graph 1, but under 
HI, the Y sample comes from the N(r+O.Gls, s) distribution, while the X sample 

comes from the N(r,s) distribution. 
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Another example of a 
thesis, H1, given approxi 

is illustrated by graph 2 

possible situation satisfying the alternative hypo- 
mately by comparing a gamma (4,l) with a gamma (3,1), 

Note that the Wilcoxon Rank Sum Test is most sensitive to location, a 
little sensitive to shape, but not to dispersion (except as it relates propor- 
tionately to differences in location). Therefore, it is the differences in 
location that are of primary importance in graphs 1 and 2. 

In order to determine the probability of erawing a value from-distribution 
A which is larger than a simultaneously drawn value from distribution B, the 
following may be used: 

P = 1 f&x) 1 fpi(t)dtdx 
x=-m t&x 

where fA and fB represent density funct 

For the case where A and B are both gamma d 

ions. 

istributions, 

For gamma (4,l) and gamma (3,1), P = 21/32 = O.hSi;. 

For normal distributions, use @[(VA - P,)/ml , as in the Church-Harris- 
Oownton (C-H-O) method of missile motor jatet, testing [23. (Note: This 
reference to the C-H-D method should not be construed as the author's endorse- 
ment of this method for the purpose of missile motor safety testing.) 

The calculation of power under this alternative involves a summation over a 
typically large number of products. Calculation of this value can become 
extremely time consuming, even for a high speed computer. A program was 
written for the author at White Sands Missile Range which will calculate these 
exact values, however, in general, the sample sizes must be very small. 
Recently, however, the author constructed a simulation which provides estimates 
of the power for much larger sample sizes. A number of the "products" men- 
tloned earljer are calculated and the mean is computed. The number of products 
involved in the exact calculation can be determined, and it is multiplied by 
this mean, Comparison to values calculated exactly (when practical), and a 
study of the sensitivity of the results to increased replications, as well as 
comparison to other simulated values bounding the results in the tables, led to 
the use of from 1 to 20 million replications to simulate values for the tables 
found in this paper. (Work has been done, reference [3], to determine the 
number of simulation replications needed under less radical circumstances. 
Here, however, a larger number of replications appears necessary.) (For n = m 
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= 50, up to 35 million replications were used. It appeared, however, that 
fewer replications using a number of different seeds yielded mean answers which 
more quickly converged to reasonable results, especially when using antithetic 
seeds.) 

In the tables, n is the sample size of the X sample, m is the sample size 
of the Y sample, RS is the rank sum for which type I and type II error proba- 
bjlities are calculated, PA is the former of those probabilities, and PB is the 
later. .Specifically, PA is the attained probability of making an error If Ho 

is rejected, and PB is the attained probability of error if HI is rejected, 

both corresponding to the same RS va-lue. RS is always calculated by adding the 
ranks of the Y elements in the combin ed sample. Note that for smaller sample 
sizes, power +PB is noticeably larger than unity due to the discrete nature of 
this test. That is, the probability of obtaining exactly the event observed 
(and no other) is non-zero. 

p Three significant digits are given for PA and only two for power and PB 
simply because it takes fewer replications of the simulation to satisfactorily 
obtain a value for PA than for the others. 

From the annex to table 1, it is found empirically that If x is the size of 
each of the two samples, and f (x) is the probability of a type II error 
under the alternative used here: adjusted to correspond to a specific signif- 
icance level, then, as a continuous representation of actually a discrete process, 

fC.lrl(x) = exp(-x/16) 

for at least 3 2 x 2 40, and perhaps this approximation could 
be trusted for x = 45 or larger. However, extrapolations are always more 
dangerous than interpolations, so caution is advised for further extensjons. 

For cc = 0.05, 

f0.115(x) = -exp(-x/[26exp 24, 

for at least 4 5 x 2 40, and perhaps for x substantially larger. Using this 
approximation, it is conjectured that for n = m = 66, when PA is approximately 
0.05 (RS = 4751), then PB for this alternative is also approximately 0.05 and 
the true state of nature would then quite safely be said to (probably) lie 
between the null and alternative hypotheses. (At the 0.1 probability level for 
PA and PB, this could be said when n = m = 37, and RS = 1507.) An extrapola- 
tion to n = m = 66 is questionable, however, and further extrapolation is not 
advised. Computer simulation for n = m = 50 indicates that for the top curve 
(PA z 0.05) in Annex I to table 1,. true values in this area for PB may be 
somewhat smaller than this curve predicts. For PA z 0.10, PB values for large 
n and m may be somewhat larger than predicted. 
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In Conov>er's book Tll. an aooroximation is siven to find RS for a given PA 
value. (RS = m(m + n + 1)/2 f' X, Smn(n + m + 1)/12 , 

the table of the cumulative normal -dlistribution.) 
where x1 -cL is from 

-The two functions given 
earlier can be used to estimate PB values when PA 2 0.10 or 0.05. 

The final graphs, 3-7, are taken from work the author directed at White 
Sands Missile Range in order to study this alternative for the Wilcoxon Rank 
Sum Test with emphasis on simulation validation for missile flight simulations. 
When comparing a very few live firings to a substantially larger number of 
simulations for each scenario, it can be seen from these graphs that once one 
sample is substantially larger than the other, increasing the larger sample 
size further does very little to improve the power. These graphs are contin- 
uous representations of what are actually discrete points. The values for 
those points were calculated analytically as noted in the acknowledgements. 

Finally, when n % m, PB can be bounded using the exponential formulations 
found earlier in this paper. If, for example, RS is such that PA = 0.1, and 

x1 ' is the smaller of n and m, and x2 is the larger, then one has that approx- 

imately exp(-x2/16) < PB < exp(-xl), with PB somewhat closer to 

exp(-x1/16), especially when x1 << x2. 

For larger sample sizes than are handled here, parametric methods may be 
used. However, in addition to the probability of error associated with any 
conclusion drawn from a parametric test, there is the additional risk involved 
in assuming the distributional forms used in such a test. Hypothesis tests 
should also be used to study these distributional assumptions to provide a more 
complete risk analysis. 

EXAMPLE: 

Consider two sources of data, X and Y, where it is suspected that Y may 
represent a population of larger location than X, but this is not clear. If 11 
observations are taken from the X population, and 19 observations taken from Y, 
then the critical value of the rank sum (RS) of the Y sample observations 
within the combined sample which represents the point at which rejection of the 
null hypothesis would occur using ~1 = 0.10, is approximately 

RS z m(m + n f 1)/Z -t 1.2816Jmn(m + n + 1)/12 

= (V)(N)/2 + 1.2816J~(11)(31)/12 

,' 324.3 

Therefore, if RS 2 325, Ho would be rejected at the 4 = 0.10 level. However, 

should RS = 325, and Ho not be rejected, then the probability of making a type 

II error with respect to the alternative hypothesis illustrated in graphs 1 and 
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2 is approximately bounded by exp (-19/16) and exp (-11/16), so 0.3O<PB<O.50. 
Note that, from table 2 , when PA = 0.099, PB (10,20) =- 0.43. Using 4,000,OOO 
replications in the program given in Appendix A, for m = 19, n = 11, and RS = 
325, resulted in PA = 0.100 and PB = 0.42. 
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Table 1 

n =m RS PA power PB 

3 
3 

; 
5 
5 

: 
10 
10 

:Fl 
10 
15 
15 
15 
15 

Ei 
20 
20 
20 
25 
25 
25 
25 
30 

i: 
30 

35 1383 0.050 0.79 0.21 

38 1587 0.100 0.91 0.09 

12 
14 
15 

?I 
35 

ii 
122 
123 
127 
128 
136 
264 
265 
273 
289 
458 
459 
471 
472 
496 
704 
705 
723 
758 

1002 
1003 
1027 
1073 

0.350 0.62 0.56 
0.100 0.27 0.85 
0.050 O-15 1.00 
0.210 0.54 0.55 
0.111 0.37 0.71 
0.075 0.29 0.79 
0.048 0.21 0.86 
0.008 0.05 0.97 
0.108 0.52 0.51 
0.095 0.49 0.54 
0.052 0.36 0.67 
0.045 0.34 0.69 
0.009 0.13 0.89 
0.101 0.63 0.39 
0.094 0.61 0.41 
0.049 0.47 0.55 
0.009 0.21 0.80 
0.101 0.71 0.30 
0.096 0.70 0.30 
0.051 0.58 0.43 
0.048 0.57 0.44 
0.010 0.30 0.71 
0.101 0.79 0.22 
0.098 0.78 0.23 
0.050 0.66 0.35 
0.009 0.38 0.63 
0.101 0.85 0.16 
0.099 0.84 0.16 
0.050 0.74 0.27 
0.010 0.47 0.54 
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Annex I to Table 1 
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n, m 
n%m RS 

Table 2 

PA power PI3 

5,lO 
5,lO 
$10 
5,lO 
5,lO 

10,5 
10,5 
10,5 
10,5 
10,5 
5,25 
5,25 
5,25 
5,25 

25,5 
25,5 
25,5 
25,5 
10,20 
10,20 
10,20 
20,lO 
20,lO 
20,lO 

5,50 
5,50 
5,50 

50,5 
50,5 
50,5 
10,50 
10,50 
10,50 

85 
91 
92 
94 
99 
45 

:: 
54 
59 

412 
418 
429 
430 
102 
108 
119 
120 
340 
348 
363 
185 
193 
208 

1444 
1457 
1480 
184 
197 
220 

1590 
1608 
1643 
370 
388 
423 

0.297 0.70 0.35 
0.103 0.42 0.63 
0.082 0.37 0.68 
0.050 0.27 0.77 
0.010 0.10 0.93 
0.297 0.71 0.34 
0.103 0.41 0.65 
0.082 0.35 0.70 
0.050 0.26 0.79 
0.010 0.08 0.95 
0.094 0.45 0.57 
0.048 0.33 0.69 
0.009 0.13 0.88 
0.008 0.12 0.89 
0.094 0.44 0.59 
0.048 0.29 0.73 
0.009 0.09 0.92 
0.008 0.'08 0.93 
0.099 0.58 0.43 
0.050 0.44 0.58 
0.009 0.20 0.81 
0.099 0.59 0.43 
0.050 0.44 0.58 
0.010 0.18 0.84 
0.105 0.50 0.51 
0.050 0.36 0.65 
0.008 0.14 0.87 
0.105 0.50 0.52 
0.050 0.32 0.69 
0.008 0.09 0.92 
0.101 0.65 0.36 
0.051 0.52 0.49 
0.009 0.26 0.75 
0.102 0.68 0.33 
0.051 0.52 0.49 
0.009 0.22 0.79 
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APPENDIX A 

FORTRAN CODE FOR 

SIMULATION: 

"LEHMANN POWER ANALYSIS 

FOR THE 6 

WILCOXON RANK SUM TEST" 

(LPAWRST) 
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ADDENDUM 

Multiple applications of this test can be used to compare two levels of a 
factor under a number of conditions, If, for example, manufacturer A produces 
a machine which is suspected to have higher reliability under most scenarios 
than a similar machine made by manufacturer B, then under each of the y 
scenarios, m, is the sample size of A's machines and ni is the sample size 

'of B's machines, for 1 = 1 to 74, PAi and PBican be calculated for each of the 

scenarios. Consider 0 2 a 2 Y‘ and 0 2 b ;Y;. 

PA is the probability of a or. more PAi's being less than pA 

(i = 1; Y ), when Ho is true. 

~3 is the probability of b or more PB,'s being less than pB 

(i = 1,~ ), when HI is true. 

Therefore, 

PA = 
and 

,ga (:)P;(l - PJX 

PI3 = xgb (yx)P;(l - PE$Y'x 

P 
b 

and PB are chosen to be reasonable considering sample sizes for each of the y 
ases. 

If k = 1 then the evidence shows that, tn general, the true state of nature 
is just as likely to be equivalent to H1 as H . 

0 

If pA Fir = 2 then the evidence indicates that, in general, the true state of 

-nature Is twice as likely to be equivalent to Ho as H1. If PA and 

pB are small, then the indication is' only that the true state of 
nature is closer to Ho than H1, although possibly not very close 

to either. 

.(Nbte that another paper in this conference, "Nuroerlcal Validation of 
Tukey's Criteria for Clinical Trials and Sequential Testing," by C, R. Leake, 

c also deals with this type of problem, and was of interest to this author.) 
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At this time, this methodology is being used to determine whether survey data 
from a presumably less reliable source is compatible with a presumably superior 
data source. Difficult to obtain data on U.S. Army warehousing activities have, 
as one obvious characteristic, a very flat "peak," Therefore, a sample median 
value can be changed drastically by the addition or deletion of one data point. 
If the secondary data source proves to provide values distributed closely 
enough to that of the primary source, the advantaqe of including this source 
may outweigh the disadvantage. The current situation is more complex 
than this, However, some results employing the methodology of this addendum. 
have been realized. 

ADDENDUM 2 

Two approximations for the power of this test which apparently are good 
for a wide range of normal alternative hypotheses are to be found in h 
E. L. Lehmann, Non arametrics: 

_Er_a_ 
Statistical Methods Based on Ranks, Holden-Day, 

1975. Although restrlcte to normal alternatives in-thefzmm which the.v 
are written, these approximations can be used to extend the tables given here 
to larger n and m. The easier of the two approximations to apply, in its 
simplest form, is found on page 73 of the above reference and is essentially as 
follows: 

where in our case we have (pA - pB)/o = 0.610. 

Note that in the example in the main body of this paper (m = 19,n = ll), 
that this approximation gives power 2 0,60, which is consistent with what 
was shown earlier. 
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Walter Reed Army Institute of Research 
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Ramat-Gan, Israel 

ABSTRACT. Circadian and other rhythmic components in data obtained from a 
sleep deprivation study are detected and characterized by complex demodulation 
(CD)  l he output of this analytical technique yields both frequency and time 
domain representation of each periodic component of interest. Non-stationarity 
introduced by an experimental treatment such as progressive sleep loss, may be 
observed and quantified. 

The analytical results provide a common basis of comparison for data as 
diverse as cognition responses from a performance assessment battery (PAB), 
moodscale scores, and physiological data such as oral temperature. 

The procedure operates on the entire data set and variance accounted for 
by each component may be calculated. 

I. INTRODUCTION. 0.c laboratory has been involved in probing the problems 
dealing with sleep discipline that are directly pertinent to soldiers fn 
battlefield situations. In the process of conducting a series of experiments 
of continuous sleep deprivation over 48 and 72 hours, a massive amount of data 
has been collected [l]. These data sets are of such diverse nature as 
electrocardiography, actigraphy based on measurement of movement on a non- 
dominant wrist, oral temperature, self scored reports of mood/activation and 
cognitive/visual difficulties, a computerized battery of performance assessment 
tasks, and a computerized lexical decision task. 

Taken in synchrony, these data have in common the characteristic of equal 
interval time sampling, whether imposed or extractable, that is to say, 
temperature, test results, self reports are taken at scheduled intervals while 
continuously recorded data such as electrocardiographs and actigraphs may be 
extracted with the same time intervals. 

How can their commonality in time be exploited so that the subtle changes- 
from an intervention, i.e., sleep deprivation, may be observed in each type of 
data, and what are the relationships among data sets. 

Standard statistical analyses such as ANOVA, MANOVA, etc., are helpful in 
pointing out general significance or non significance among data sets but are 
not helpful in pinpointing exact locations of similarities or differences in 
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the time oriented dimension. Other time series analyses such as Four:ier 
transforms, auto or cross correlations are global In nature and again do not 
yield local parameters. 

Towards this end, we have taken a technique more commonly used In signal 
analysis and adapted it to our specific needs SO that the resulting analysis 
provides information on an epoch by epoch basis over the entire sampling period 
r2,31. We have made some simplificatLons, perhaps taken some Hberties, but 
our emphasis has been more on practical applications rather than on 
mathematical rigor. Nevertheless, our analyses have yielded faithful 
approximations to the original data sets and have provided us with the local 
parameters of power, amplitude, phase, and remodulate for each epoch [4]. 

II. THE METHOD OF COMPLEX DEMODUIATION (CD). 

The data set comprising measurements taken in equal time Increments 
(epochs), is given as: 

at> = Xl' X2' . . . . . . . . . . . . . ..X 
N (1) 

where each x'element is the value of the measurement at that epoch and XI is 
the first epoch value at time, t = 0. The epoch length may be 1 minute, 15 
minutes, 1 hour, etc. Although oral temperature was taken hourly and ECG and 
actigraph epoch lengths were less than 1 mLn for the data collected here, the 
computerized tasks were given at alternate hour intervals, The epoch length 
used in the CD analysis for all data except the computerized tasks was 1 hr, 
while a 2 hr epoch was used forthe computerized tasks. However, comparisons 
of all data types were standardized to 2 hr epochs. 

Subtraction of the data series' mean value from each epoch datum yields 
the set: 

where 

y(t) = Yy Y.p . . . . . . . . . . . . . ..y 
N 

'1 =x l$ i-Gnzl xn 

(2) 

(3) 

i = 1, 2, . . . . N 

The new data set oscillates around the mean level or what is co~only referred 
to as the "zero frequency". 

Time series are implicitly infinite in length, but actual analysis of 
data requires a finite set of data and hence we are faced with abrupt 
truncation at the beginning and end of the data set which has consequences of 
"end effects" resulting in distortion of local parameters at these locations 
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after ana.LysIs. Our experience indicates that these end effects may be 
minimized and or eliminated by extending the data sets at bokh these locations 
In the following way: 

z(t) = Ym’ Ymel’ “‘Yl, Y1’ Yy l **YN> Yp YNhl’ “‘YNBk (4) 

where 
m = number of folded-out data epochs 
k=m-1 

This is reasonable in light of other alternatives, one of which adds zeroes to 
both ends [5]. The number of data points folded-out varies according to the 
length of the data set. tir rule has been to use 20% of the total values if 
the series is long 0100 epochs), and 5X, if a shorter segment. 

All subsequent mathematical operations are made on the folded-out 
series. However, the final output retains only the parameters of the orIgina 
epochs for statistical analysis and display. 

Mapping of each data value to the complex domain follows with generation 
of real (re) and imaginary (im) components for each epoch in which the 
arguments of the respective functions contain the frequency to be elicited. 
These functions are: 

zi(re) = yl . cos27rfjt/s (5) 

z,(im) = yi . sin27Tfjt/s (6) 

where 
1 = 1,2,.... N f 2m (indexed for extended data set) 

fj 
= jth frequency selected for demodulation, 

ii = 192, . . . . ..s/2 

t=i-1 

s = number of epochs sampled in the chosen period, T 

For example, If period, T = 24 hr, frequency to be demodulated = 3 cycles, and 
sampling rate = 2/hr, then 

fj/s = 3/(24*2) = 3/48 

Since our procedure involves incremental sampling time of equal intervals, then 
t increments by 1 from time zero, which corresponds to the first data point. 
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Implicit in each datum is the collective value of all inherent 
frequencies contained in the series. Multiplication by the sine and cosine 
terms preserves not only the frequency demodulated, but also generates 
additional frequencies from the sums and differences of products between the 
modulating frequency and the inherent frequencies. This transforms the data 
from the time to frequency domain and visualized as a Fourier spectrum, places 
the frequency being demodulated at the zero frequency position. In a step-wise 
process, each frequency of the period chosen (in our cases, we have generally 
used the circadian period which is the 24 hr cycling most common to man) may be 
individually demodulated, 

For a given data set, the highest frequency demodulable is the Nyquist 
frequency [6] and is equal to one-half the sampling rate, i.e.,.sampling at 
hourly intervals in a 24 hr period allows demodulation of frequencies 1 
through 12 per day. Ihis limitation is due to discrete equal sampling 
intervals in which frequencies higher than the Nyquist are enveloped by lower 
frequencies with which they coincide at crossover points, and are therefore 
"aliased" and not true frequencies. 

Extraction of the desired frequency at the zero frequency position 
necessitates exclusion of not only the sums and differences of the products 
mentioned above, but also of other noise constituents. This is accomplished by 
a filter which is moved sequentially along both sine and cosine components of 
the series first in a forward pass, then a reverse pass and the entire process 
repeated. The forward pass causes a shift of one in the data set which is 
corrected by the reverse pass, thereby preserving true phase values. Zhe 
filter employed in this process is exponential and consists of two parts: 

where 

and 

Fl = (A2 + B ) 2 v* 

-Q 
F2 = e, 

A = 1.0 - e 
-Q 

cos2lr y/s 

B=e 
-a 

sin27ryls 

Part 1 (7) 

Part 2 (8) 

y= gain factor (variable from 0.1 to 0.9) 

a= 2r/s 

s = number of epochs sampled in the chosen period 

(9) 

(10) 

The gain factor, y , may be varied from 0.1 to 0.9 depending on the magnitude 
of the original data values i.e., smaller values require higher gain. Direct 
comparisons of different records require that the same gain factor be used. 
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A new value is obtained for each datum in the series as a consequence of 
filtering so that for the forward pass: 

2’=2 =o 0 0 
z;(m) - zi(re).Fy -t z ;-,(*e). F2 (11) 

where 
qimm> - z,(im>.F~ + z;-~ (im)*F 2 (12) 

1 - 1,2,....N + 2.m (Indexed for extended data set) 

and for the-reverse pass: 

='&2m - %+2m 

ZYdl (=I - ziml(re)e F1 + zy(re)*F2 

q-1 (id - “iv1 (1.m). Fl + z;(im)*F2 

(13) 

(14) 

where i - N f 2m, N + &I-1,....2 

l'he low pass characterietics of this filter allow passage of power at and 
near the zero frequency in the spectrum while excluding other frequencies. 
Inevitably, there will be some "leakage" of power from frequencies located 
adjacent or near to the zero frequency position. For this reason, in our 
analysis of human data where the strongest frequency is the circadian (1 cycle 
per 24 hr), epoch values obtained from remodulates (to be defined shortly) of 
frequency 1, are substracted from their corresponding values in the folded-out 
data set before demodulating in the usual way for all subsequent frequencies. 

In practice, the filter operation involves summing a proportion of each 
epoch value with a proportion of the previous one. 'Xhe outputs of each filter 
pass are used as new inputs for the next pass in the reverse direction. 

The final outputs from the filter operations are used for computing the 
local parameters or properties of each epoch. lhese are: 

Power: 
pi 

= 2.0[z';2(re) + zy2(im)J (15) 

v Amplitude: Pi2 (16) 

Phase: 4i = arctan[z~(im)/z~(re)] (17) 

F&modulate: Ri = 2*0[zl;(im) sin2rf,t/s + z;I(re) cos2*fjt/s] (18) 

where I = 1,2,.....N (indexed for original data set) 

fj 
= demodulated frequency, j 

j = 1,2,'......+/2 

t=i-1 

s - number of epochs sampled in the chosen period 
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The remodulate values, after truncation of the folded-out epochs at the 
beginning and terminus of the data series, comprise a smoothed function of the 
desired demodulated frequency with the proper phases. The remodulates are used 
in all subsequent comparisons. Peak and trough amplitudes and their 
corresponding real times may be determined over the entire length of the series 
for every frequency demodulated. Actual length (in hours) of the circadian 
period may be calculated either from peak to peak, trough to trough, or zero 
cross over points depending on the interest. Instantaneous changes in phase 
(from phase plots) signal changes in period length, i.e., frequency, and may be 
detected from records taken over several cycles. 

III. ILLUSTRATIONS. 

Graphical representations best illustrate the method and results of the 
various types of data we have analyzed. 

Figure 1 (top) depicts the original data series and (bottom) illustrates 
how the data set is folded out at the beginning and terminal ends. 

Figure 2 is the representation of transformation to the complex domain of 
sine and cosine components of the data set with the circadian (1 cycle/24 hr) 
filtered output from these superimposed in heavy outline. 

??igure 3 summarizes the CD procedure, as plots, from the original input 
data to output parameters of amplitude, phase, and remodulate of the ciracadian 
component along the time scale in epoch intervals. 

In our 72 hr sleep deprivation study, the subjects' oral temperatures 
were converted to z-scores to facilitate comparisons across subjects. Since a 
strong linear component with negative slope was observed over the 3 days' 
running, CD was performed on the residual (fig. 4) from the least squares 
regression of the z-scores. Frequencies of 1 through 12 cycles per day (cpd) 
were demodulated and plots of their remodulates generated. Some of these plots 
are presented here. Mgure 5 shows the circadian with its daily rhythmic 
cycling of temperature rising slowly during the morning , peaking in early 
evening and then dropping to its lowest point usually between 2 and 4 A. M. 
Moreover, there is broadening of wave shape on the 2nd and 3rd days of sleep 
deprivation, indicating changes in phase and period. There is an accelerated 
decline at the close of Day 2 in the raw data and this is reflected in the 
steeper trough for the circadian rhythm. The temodulate of 2 cpd shown in 
Figure 6 may represent the post-prandial dip that is sometimes seen as bimodal 
in the raw data. Figures 7 and 8 are the 4 cpd and 12 cpd components 
respectively. Increase in amplitudes of higher frequencies components may be 
signals of intrinsic system instability i.e., subjects' reports of feeling cold 
despite normal room temperature, of appetite loss, and of eating and 
drinking. Summation of the circadian remodulate with the 2 cpd is presented in 
Figure 9 and of all remadulates in Figure 10. Note that in the final summation 
(Fig. lo), there are no 'end effects' distortion and the summed remodulates 
follow the raw data shaping almost identically. 
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The variance accounted for by each individual frequency demodulated and 
by cumulative frequencies are given as R-squared values in Bble 1. These R2 
values are derived from regression of each remodulate with the original 
detrended data set. The total power from the summed data epochs for each 
frequency is listed in Bble 2 along with the cross correlates of each 
remodulate frequency with the detrended data set. The cross correlates are 
measures of peaks and troughs correspondence between the original detrended 
series and each of the remodulate frequency. 

Other applications of complex demodulation have been to "throughput" 
measures of performance [7], during the same sleep-deprivation studies. 'IhiS 

is a single-valued performance index derived from the ratio of accuracy to mean 
reaction time and describes the rate at which the subject gives "effective" 
performance as a function of time on task. There is increasing performance 
deficit over time as seen in plots of the original data (Ngure ll), however, 
the rhythmic components are evident and are elicited from the CD procedure 
(Figure 12). A comparison of the circadian remodulate of the PAR scores with 
the subject's oral temperature is shown in Figure 13. Note the phase 
difference between performance and temperature with the latter leading 
performance. CD of scores from a mood scale check list taken by the subjects 
before each administration of RAE, indicates the same decline in activation and 
afect over the time the subject is sleep deprived. This is shown in Figure 14. 
However, the capacity to maintain the circadian rhythm is still apparent as is 
seen in Ngure 15. 

Finally, scores from a five point self-scoring computerized questionnaire 
containing fifty six queries relating to hallucinations, delusions, and 
illusions [8], grouped as to either: 1) cognitive (C), 2) Visual perceptual 
(V), 3) non-visual perceptual (N), are analyzed by CD and the results for the 
circadian rhythm are shown as remodulates along with oral temperature in Ngure 
16. Note that at the beginning of the study, circadian rhythmicity for non- 
visual perceptive problems and cognitive difficulty is not well defined since 
the subject’s response was mostly at the same low level to those factors over 
the first 30 hours or so. Q-I the other hand, visual perceptual problems are 
rhythmic, but out of phase with temperature, which is logically reasonable, 
that is to say, when the subject is at the peak of his cycle and feeling 
generally well or better, he experiences no visual problems of perception. 
Note that the other measures of cognitive difficulty and non-visual perceptual 
problems when finally reported as occurring also vary rhythmically but again 
out oE phase with oral temperature. 

IV. CONCLLJSIONS. 

The entire procedure of CD is computerized. There are other refinements 
such as use of a spline fitting program [9] to calculate for missing values and ,. 
also to obtain finer resolution of times of peak or trough occurrences by 
interpolation between epochs. We have in addition, set strict criteria for 
accepting frequencies demodulable within the Nyquist frequency range as "true" 

or noise elements by eliminating those frequencies whose peak amplitudes are 
not within the ten percent population of highest peak values. 
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TABLE 1 

VARIANCE CONTRIBUTED BY EACH FREQUENCY DEMODULATED 

Frequency(cpd) R2 

1 (circadian) 0.5804 
2 0.0336 
3 0.1531 
4 0.1362 
5 0.1134 
6 0.0934 
7 0.0707 
8 0.0678 
9 0.0502 
10 0.0540 
11 0.0591 
12 0.0442 

------------------3-_1__________________---------------- 

Cumulative Frequencies 

(Thru) 

R2 

2 '0.7003 
3 0.7618 
4 0.7729 
5 0.8002 
6 0.8123 
7 0.8329 
8 0.8473 
9 0 8621 
10 0.8751 
11 0.9002 
12 0.8625* 

* 
Addition of the 12 cpd component decreased 
total variance accounted for. 
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TABLE 2 
r  

POWER OF EACH FREQUENCY AND CROSS CORRELATION OF REMODULATES 
WITH ORIGINAL DETRENDED DATA 

, 

Frequency (cpd) 

1 47.5827 36.8280 
2 5.1613 3.1835 
3 3.7997 5.9312 
4 5.0920 6.5174 
5 4.3713 4.7435 
6 2.3933 3.9863 
7 1.8397 3.3279 
8 2.3014 2.6159 
9 4.0929 2.7306 
10 1.3038 1.7613 
11 2.5519 2.7066 
12 6.4367 5.2931 

Power 

Cross Correlate 
of Remodulate 

With Detrended Data 
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CYCLES 01" !;\llCIDE 

J 0 S E I’ Ii , 14 , I! 0 T l I 11 li IZ c 

WALTER REED ARI(IY INSTi“I’U1’E UI- Rft;E/\RCII 

WASHI+HGTOt~, DC 20307 

Today's clinical prosontation Is tllc co~npilt-i~;or~ 0-F suicidoz 

In Unltcd State!z Army personnel, 1975-1902, and in tlie United 

states J 1972-1978, I intend to pr.escnt our current 

apldcn\lologlcal approach and point out sonlo as-yet unresolved 

urpocts of this work in order to solicit colnmcnts :F~QIH this 

oudlenco. 

Flyurt! 1, II e s e o I- c h g o P 1 P n rl w o r k i n g II 7 1) CJ t h c 5 i s , 

Thu goal of this observational study is to try to dctcrslino 

If thoro arc sluoningful fluctuations in the 'sui(.idc data and ta 

provldu on analysis 9f the data base that identifies the corrc- 

later; of any of these changes In the rates. 

Figure 2. Weekly values 0 f t I1 0 I1 u ll l l l c! I" 5 c-l: suicides --Iii Urii ted 

States Army pe1-so1111c1, 1975-1902 (IlotP rcvr*rscd' !;culcl. 
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Our Army data are the 83q suicides recorded duriny calendar 

years 1975 through 1982. These were 93% enlisted r;oldiers and 

95% male . Tl!is is a sparse data set for the analysis of day-to- 

tiay i: I-c~rrCj$, !i i rlcr? r,lC'!;y o-i tll;! 2 3 2 2 d 2 y 5 h a cj I-I 0  5 II i :: i rj II I; , 1: j 9  1.1 r -  ;I ',j 

shows the number .of suicides per week (the range is 0 to 7) fro!;1 

1975 on the right edge thru 1982 on the left. 

Figure 3. Morltllly values of the annual rate of suicide (per 

100,0(101 in llnited States Army personnel, 1975-1382. 

Figure 3 shows the annual rate of suicides Cper 100~000 average 

strength) in each month from January 1975 (‘7501 ‘I through 

December 1982 (V8212tI. 
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As a starting point, WC mr,Ice ,the assumption that a popula- 

tion of soldiers will have the same suicide rate as the civilian 

population of the same age and sex. On a bi-annual basis, this 

turns out to be not entirely true. For each of the four bi- 

annual suicide reports (lii2,3,4), the male suicide rate is 

uniformly lower for the Army. For the females in the Army, their 

rote is not as reduced as is their male counterpart. Over all, 

the interpretation that,the Army is a supportive social institu- 

tion that protects against suicide is not contradicted. 

Beyond this “zeroth level” comparison, the next set of 

questions were prompted by the paper of MacMahon (5) who reported 

on 185,887 suicides registered in the United States during 

1972-1978. Her data presentation used the standard social units 

of time (week, month, year) and the lunar month. The percentage 

departure from the mean was plotted against the time span and 

CyClCS aFC apparent in the plots for a11 but the lunar month 

data. The Army data have bean similarly arrayad and plotted 

along with the MacMahon data, The overlap of these two data sets 

is not complete since suicides by soldiers outside of the United 

States are only reported in the Army data. I will discuss those 

in order of increasing variability (distributing the same 834 

c:cscs Into tilore intcrvnls results in ati irlcrl2ari2 in tl~c 

variability). 
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-9 ’ I I I I I 
Sun 

I 1 
MOll rues Wed Tnurs Fri Sal 

DAY OF WEEK 

Figure 4. Doviat ion from the mean by day of t-ha week for* Uni,‘ied 

Statns civilis population, 1972-1973 (U.S. j ilnd United Stu-tc!s 

Army, 1975-1982 (ARMY), 

Tho dny of tho week data is ~ihown in F igurc 4, 1’11~ tc~u 

distributions appaar to be quite simiIar, ls Q I- II -I- II D A r 111 y a n cl 

,United States data show a Mandey increnso 9 II cl P d i p i n t II e r3 11 cl CI f 

tho week. For the United States, Saturday is t Ii c 111 i n i 111 u 111 k1 II i 1 L: 

F r i d a y i s t h Q III i n i III u III f o r t h u A r my . T II c? III B x i III u III d c pa r t u I- D +I; I- (I III 

tha maan is about the same *For bo-klr data SULS, 
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There is no significant difference betcrcon ~IIG 

on I chi-squared tast. 

- ARMY 
*-* U.S. 

t LI 0 d i 5 

I ‘,‘,‘,‘,‘,‘,‘,‘,‘,‘,‘,r,‘,‘,‘I 
1 3 5 7 9 1113 15 17 19 21 23 25 27 23 31 

DAY OF MONTH 

Figer 6. Deviation from the mean by month of the year for United States civil.ian 
populatioa,1972-1978 (U.S.) and United States Army, 1975-1982 .(ARMY). 

distributions have two relative paaks, they do n0.k occur at tllc 

Stotos data, the peaks arc loss than 5% and occur in Ploy and 



CHI-SQ = 22.56, r-4 = 12 
P (22-56, 111 = -0.02 . SIG. 

Figure 7. Statistical test of month of ysnt effect, 

Tha probability that these distributions are tlrc same Is only 

0,02. 5 0 m c 111 i 1 i t a r y r c! il 5 5 i g n 111 c? n L E ‘I- Cl I’\ P Cl I.1 0 !i L Ii 0 C C U r il ‘I- i l h U U t 

30 1 - ARMY 
R 

-5 

-10 

-15 

-20 

-25 

-Flbr 
I I I I I I I I I 

APT MOY June July Aw Sept Ott Nov De 

MONTH OF YEAR 

Figure 8, Deviation from the mean by day of the month far United States civilian 
population, 1972-1978 (U.S.) and United States Army, 1975-1982 ‘(ARMY)., 

The cloy of, manth data are, shown in Figure 8, The United 

Stat~~ data shows a peak on the fifth of the ttionth folloc~ed by 

;I !~rr!nt rlc3. of variabili I-y but, using a five dny sliding avorugc? 

Cnol: shown) there appears to be a set of peaks. early in the month 

(on the 4th) 6/7tht and 10th) and a peak late in the month (on 

the 22ndl end a dip at thg end of the month(on the 28th). 
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Figure 9. Statistical test’of day 0-F month c-f-feet. 

There is no significant difference between the, distributions 

using a chi-squared tes.$. Pay day in the Arnry ir, the last 

working day of the month and some of the suit ides may bo due to 

financial problems that become apparent close tu pay day and ,the 

~I:irsi:-o.F-the-tnonth bi 11s. 

What we have done In discussing thc~; -Fi gurcs was to average 

the eight years of data assuming that there are cycles of 

psychosocial avents occurring at specified titer!* t.lhich drive 

these su’icides, T~Q increased rates at the start af the week, 

the start of the month and the start land middle) o-l’ the year 

lend support to the assumption that there are cycles. 

The question of cycles within She Army suicide data wns 

looked at directly but only briefly, We did D spectral decom- 

position of the doily suicide counts using 1-1)~ CJAS procedure 

SPECTRA. 
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2916 DAYS , 83-i SUICIDES 

M’o: THE FREQUENCY SPECTRUM IS NO1 
D I FFEWEM FROM W-1 ITE NO I S/Z u 

FISHER'S KAPPA = Ti7,6Gy ‘[L&f D,FY 

P 17.66, 14571 > 0.10 I NO-I- SLG. 

Sinca the fast fourior transforln algorithlii of tl1~11: procedure 

raquiras that tha nunber of data points hnve il largest prim2 

divisor loss than or equal to 23, the analysis ~.~ns danc with i.111: 

first 29’16 days, Tha null hypothesis that the largest ot~servcd 

poriodogranl ordinate is the largest in a sitllilorly sized randot 

sample was testad with Fisher's Kappa. The vc 1 UC 0-F 7, 6 6 w i t II iin 

n of 1557 two-dcgreo-of-frgedoll~ periodicjvam orJinak~s has iI 1') > 

0.1. With that negitive result, it appears that any search fur 

furthor structure within the Army suicide dota would be inap- 

propriatc, 

The inobi Lity to proceed further with the! nntilysis a$ the 

Army suicides for cycles in a direct fashion 5 1.1 u u 1 cl n ’ t i n i- e r .F D r’ c 

with having clever ideas about the cyclic properties of the 

United States data and than testing‘i'f the Army data looks 1iIro 

And it is at this point, needing SOIUP 

.I- woy5 ii0 lOOk 

tha United States data, 

clavor idG;lS# that I sol 

at this.rolativcly cJmal$ 

icit the audienca ~0 r;uf~gcc 

b'ut important data EL”L. 
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Robert A. Dragon 
National Range, Data Collection Division 

US Army White Sands Hissile Range 
White Sands Missri.112 l?anye, 21Y 8%C)O2 

ABSTRACT The integration of new technologies such ~Svic;Lco 
systems in place of current high-speed fil.m carz;cras is 
discussed. Eor a great percentage of daytime activity the 
desert atmosphere is shown to be a limiting factor for the 
collection of visual data, The atmosphere and instrument 
focal lengths are hypothesized to be major considerations 
for instrument design both with film and video systems. 
An experiment using existing data and analysis of variance 
is suggested to evaluate the hypothesis. 

INTRODUCTION The data collection task at White Sands NissiLe 
Range (WSMRF often relies on a -photographic record consisting 
of accurate images of test projectiles. Photography has been 
the common method of securing these records, usual.ly through 
the use of tracking telescopes, cinetheodolites, television, 
and fixed cameras. As new tcchnologics bccomc available, it 
is natural to expect them to be rapidly integrated into the 
full complement of existing optical instrumentation. 

New technologies and"instrument performance have been 
important considerations at WSMR for more than thirty-five 
years. Consideration of the atmospheric envircnmcnt and its 
interaction wit p she optical system has always been consid- 
ered important, I however, until the midnintuen seventies 
f'ie2d implementation of video.systems was not entirely 
practical because of low frame rate. During this perigd 
projected video requirements were discussed in dc-tail.3 

Various articles have recently appeared cqi:lTaring the 
advantages of video over photographic systems. 7 Although 
these discussions are both timely and qqropriate,"mafiy 
researchers fail to include the actual field conditions as 
a significant factor which contributes to image quality. 

This is a 'best case' analysis. Tha-t is, only some of 
the factors which may degrade optical system performance have 
been considered. Other factors such as mechanical vibration 
and photographic processing are outside the scope of this 
paper. 
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THE hTf30SPBERE The desert atmosphere can be one of the best 
and well behaved components of any optical system. IIowever, 
meteorological deterioration can be significant, especially 
in the daytime. For long distances (and even short distances 
if one is viewing close to the ground) one can expect some 
sort of image degradation. Local ground heating, wind, and 
dust can seriously degrade images at both low and high angles 
of observation. Excellent night seeing resolution is about 
one arc-second ("). Poorer seeing resolution is often the case 
over most of the daytime southwest desert. 

THE RECORDING LrlEDILJfiI The effect of the recording medium 
'onthe recorded image is important. Two common recording 
media, photographic film and video will be compared. In this 
analysis Ektachrome film with a high contrast resolution of 
70 line pair per millimeter (lp/mm) is used. If the entire 
tape-playback system is considered,the resolution of most -," . . 
current video systems is about 17 lp/mm. 

When atmospheric seeing is degraded each point is imaged 
as a much larger point. The image size is given by: 

lens 
Image size = focal length x angular resolution [13 

X 4.85x10-6 arc-set 

where 1 arc-second = 4.85x10 -6 radians. 

The following seeing resolutions can thus be translated 
into linear resolutions and lp/mm at the photographic or 
video reciever as follows. 

Table 1 
Seeing Image size Resolution System 

1 3rezaec 12 urn 81 lp/mm loo-inch 5 -.arcrsec 62 pm 16 lp/rrun 10 124 8 Q/m focal arc-set pm length 

1 arc-set 24 pm 40 lp/mm 
5 arc-set 124 urn 8 lp/m.m 200-inch 
10 arc-set 248 w-ii 4 lp/m focal length 

System resolution is computed by the following 

l/RT = l/'Rl -I- l/R2 + . . . l/R, (Ref 6) 121 
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Where R R 
the q-s&n &&i&n. 

R are tile component resolutions and RT +? 

This relationship between atmospheric seeing, system focal 
length, 
below. 

and resolution can be shown graphically by the-figure 

70 

60 

-spheric Seeing -spheric Seeing 

FOCAL LENGTH - inches 

ANALYSIS 
is to;9Le-be; 

If this hypothesis (i.e. the above relationship) 
~tcated, large amounts of data regarding the the 

instruments and quality of optical data will be required. 
'Fortunately this data is currently available in the form of 

film/video analysis records for each test mission. These 
records cover about one year of previous testing. The 
following have been selected as relevant variables to deter- 
mine any relationship between record quality and any of the 
variables. They are: 

1. Recording ljiedium (film or TV) 

5: 
Lens Focal length 
Weather 

4. Time of Day 
5. Test name 
6. Equipment operator 
7. Instrument Site 
8. Instrument number 

Figure 1 
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FILM VIDEO 

LENS FOCAL LENGTH 
-inches 

50 100 inches 
100 inches 
200 inches 

WEATHER 
CLEAR/GOOD 
WIND/DUST 
WIND/NO DUST 
CLOUDY 

TELESCOPE OPEmTOR 
NUMBER 1,Zr.w. etc. 

TELESCOPE NUMBER 
NUMBER 851,852,... cct. 

TIME OF DAY 
HOUR 06:00, 07:00,...etc. 

The data is a record of image quality. Although somewhat 
subjective, sufficient records should show the hypothesized 
relationships clearly. ,. 

ANALYSIS OF DATA -- It is proposed to analyze the data by 
use of multivaria.te Analysis of Variance. An excellent 
treatment of this subjefb arranged for use on computer is 
given by Jeremy D. Finn . 

CONCLUSIONS With litt,le additional input sufficient data call 
be extracted from existing data records to show relationshipa 
between the use of film or video and other variables. 
Advantages (or disadvantages) between the use of photographic 
fi.&m (other than cost) should be clearly shown. 
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A TYPE OF CORRELATED DATA 
Iii OPERATIONAL TESTItlC 

U.S. Army Operational Test & Evaluation Agency 
Falls Church, VA 

ABSTRACT. During a portion of ti test, N gunners fired two rounds apiece. 
The overall proportion of hits on first rounds was very close'to the overall 
proportion of hits on second' round shots. However, an individual gunner's 
performance on his second shot was positively correlated with his performance 
on the first round. 

D The parameter of interest was p, the probability of hit using the firing 
device. The proportion of hlCs among the 2N shots was thti natural polnt 
estimate of pa However, in calculating interval estimat$s for p at a given 
confidence level, or tests of hypothesis of the form psp, at a given 
significance level, the situation became more subtle. Since the first round 
outcome did not deterministically predict the second round outcome, WC 
clearly had more -information than just the N first round shots. On the 
other hand, the assumption that we had 2N independent trials was not 
justified. 

In this paper , a model is proposed for the analysis of this bud similar 
situations. This model generalizes the "two round" case and considers data 
in blocks when the observations within blocks are not independent. 

I. INTRODUCTION. During a portioii of the test of a firing device, each 
gunner fired a volley consisting of two rounds. The outcome of each round 
was either hit (H) or miss (H).and one of the purposes of the test was to 
draw inferences about p, the probability of hit. 

The following table depicts a typical segment: of the results: 

Gunner 
Rnd 1 2 3 4 = 6 7 8 9 10 
1 H H M M I; M K H M 7 II 
2 H H H M H M H M M H 

D 
Here, the overall proportion of hits on a first round is .6 and the 

overall proportion of hits on a second round is also i6. The probability of 
hit, on a first round appears to be the same as the probability of hit on a 
second round, so the overall proportion of hits is an unbiased point 
estimate of p. However, 'the conditional probability of hit on a second 
round after having scored a hit on the first round of the volley is 5/6 
which is greater than .6. In other words, performance on the second round 
is not independent of performance on the Eirst round. Suppose n volleys 
were fired. He.do not have 2n independent rounds. On the other hand, since 
the outcome on the first round did not predict the outcome, on the second 
round deterministically, we have more information than just the II first 
round shots. The problem is to calculate confidence Intervals and test6 of 
hypotheses about p that reflect our true amount of knowledge realistically. 
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1 

XI. THE MODEL. n players are selected at random. The probability of hit 
for a player comes from a distribution with mean p and unknown 
variance o2 . Then Pl,. . .,I',) the players' hit probabilities, 
are independent and identically distributed random variables with acan Q. 

The i'th player fires ki shots, ki 2 l,ill,...,n. The data is 

tX,j: i=l,.,n,j=l,..,ki) where XIj '1 if the i'th player scored a hit 

on the j'.th trial and 0 otherwise. If 1 # j then Xir and X 
Js 

are 

independent. Xir and Xis are correlated but are conditionally 

independent Bernoulli variables with parameter pi given (Pi = pi]' 
k. 

XII. THE TEST STATISTIC. Set Gi5 ja: Xij, i=l,..,n and let 
n 

T ‘i&(Gi/ki)/n. Then, using the law of conditional expectation, 

E(GI)-EE(G&) = E(kiPi) * kip so that T is an unbiased estimate 

of p. 
k 

E(G;) - EE( j$L ':j+ j$r xijxirlpi) = 

E(kiPi+ki(ki-1)P;) = kip+ki(ki-l)(p2+02) so that 

Var(Gi) = k,(p-p2) +a2 k&-p2)+02(k:-ki). 

If we set A= 1 l/ki then 

Var(T)=(A(p-p2)+02(n-All/n2 

To utilize T as a test statistic, it is necessary to estimate Var (T). 

The following lemma is easy to verify: If Yl,,.. Yn are independent 

with a common mean and Var (Y,)=oz, i'l,.., 
n, 

n thenEfgl i ' '(y +2 

(n-1)/n & 0; Applying the lemma with YiICi/ki and using (11, 

E $; (Gl/ki-T)2=((n-l)/n)(A(p-p2)+c2(n-A)). 

4 

(1) 

(2) 

4 

(3) 
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Letting D= C tC,/ki-T)2, it follows from (2) and (3) 

rhat D/(n(n-1)) is an unbiased estimate of Var T; 
proposed is, then, T/E where E= fi,n(n - 1). 

The statistic that is 
If P[U< xJ=l- u/2 for u 

standard normal then T-Ex<pfl+Ex IS an approximate i-a,confidence 
interval for p. Another application would be to test the hypothesis II,: 
pL.9 vs. HI: p< .9 using the rejection criterion (T-.9)/E 2 - x 
to achieve a significance level of approximately e/2. 
IV. A REFINEMENT. If Cl’ . . ..C. are any real numbers such that 

iilCikial then T* 2 C 3 iGi Is an unbiased estimate of p. The choice 
D 

of Cjul/(nki)‘was made to facilitate estimating the variance of T*. 

This corresponds to weighting each player equally. Another possibility would 
be Ci=l/N, N= Ck 
multipliers to m nimize f 

ie. weigting each shot equally. Using Lagrange 
.CCi Var Gi subject to the condition 

c Ciki=l yields the result Ci 'K/(p-p2+02(ki-1) > where K is a 

‘constant of proportionality. 

v. A S IHUL4TION. Since normal approxomation was used, a simulation was run 
to test the accuracy of this method. A situation was considered in which 
four players were selected. Their probabilities of-success were distrubuted 
uniformly on [.5,1] so that the overall probability of success was .7S. Each 
player fired 5 shots. 95% confidence intervals were constructed using both 
the proposed'statistic and using (4)Tkl.96fi(l - T)/N 1-e. neglecting the 
heterogeneity of the players. The program calculated the proportion of times 
the confidence interval contained -75, the true value of pa 

For three runs, the results were .97, .96 and .97 for the proposed 
interval and .81, .77 and .78 using (4). 
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APPENDIX - SIMULATIOtj PROGRAM 

x=0 : y-0 
:O DIM P(4), X(4,5), G(4) 
15 CNT=O 
20 FOR I'1 to 4 

30 P(I)=.S*RND(l)f.5 
40 FOR J=l to 5 

50 X(I,J)'0 

60 H=RND(l) 

70 IF H -P(I) THEN X (I, J) =1 

80 NEXT J: NEXT I 
85 T-O 
90 FOR I= 1 to 4 
100 c(r)=0 
110 FOR J-1 to 5 
120 G(I)"G(I)+X(I,J) : NEXT J 
130 T;T+G(I) : NEXT I 

140 T"T/20 
150 D-O 
160 FOR I=1 to 4 : D=D+(G(I)/~-T,)h2 

170 NEXT I 
180 E=SQR (D/12) 

200 IF.ABS (T-.75)e1.96*E THEN X=X+1 

210 IF ABS (T-.75)rl.g6*SQR (T*(l-T)/20) THEN Y=Y+l 

220 CNT=CNTSl 

230 IF CNT 400 THEN 20 

240 PRINT "XBAR""; X/500; "YBAR=";Y/500 

250 END 
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A Simulation Process for Determining Reliability 
of Cyclic Randon Znaded Structures 

D. Neal, W. Matthews and T. DeAngelis 
Army MBtexlale and Mechanics Research Center 

Abstract 

A unique application of the Monte Carlo method was developed for determining 
reliability vs. cycles to failure of the H60 tank torsion bar. In applying the 
method, material torsional fatigue and spectrum loads were modelled such that 
variability in the functional parameters and operational loads were represented. 
Random torsional displacement values obtained from the amplitude displacement 
distributions applied to the fatigue equations resulted in an exponential distri- 
bution for cycles to failure of the in service bar. The number of simulations in 
the Monte Carlo process was determined from a convergence criteria involving 
stability of the third and fourth moments of the cycles to failure distribution. 

Reliability vs. bar life computations indicated a negligible amount of life 
after flaw initiation. Assuming a design change involving a twenty percent 
reduction in bar stresses ,increased the life estimates by a factor of three, An 
increase in reliability can also be realized if computations are made by assuming 
a bar has been in operation for a specified number of cycles. A comparison of 
minimum life (ninety nine percent probability of survival) between predicted and 
in service results showed excellent agreements (less than eight percent difference). 
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Introduction 

The current need for establishing reliabiity of various components and 
ByBtaB for U.S. Army weapon vehicles is being realized. The consequences of 
over-or under design are often reflected in either premature failure: or excess- 
ive costs and poor performance due to excessive weight. The mean life estimates 
used as a criteria for defining acceptability of cyclic loaded component will 
often provide a false sense of security regarding its capability. The applica- 
tion of higher strength ferrous materials or the less conventional structural 
materials such as composites and ceramics will often result in premature 
failure because of th' inability to recognize the inhirent variability of the 
materials strength. 

The objective of this paper is to determine a methodology which will 
circumvent the present deterministic approach used in establishing an acceptable 
design for cyclic random loaded structure. Instead of analyzing the worst case 
situation related to the spectrum loads, .S/N curve, or crack propagation laws, 
the authors introduce a method which simulates the variability in loading and 
materials capability. Use of this methodology eliminates the over (worst case) 
or under design (mean life) situation by introducing a probabilistic design 
criteria. Recognition of the reliability values as a function of the life cycles 
of operation can provide the opportunity for selecting a specified life value 
corresponding to the probability estimate. The remaining component life can then 
be determined as related to its probability number. 

The recommended ASTM procedure for determining acceptable design, involves 
establishing a lower confidence 3 Standard Deviation bound on the S/N Curve then 
selecting cycles to failure from the bounded curve consistent with predetermined. 
maximum stress obtained from the spectrum load results. This procedure can often 
result in an over design situation since the maximum load may rarely occur in- 
addition to the fact there is a small chance that the lower S/N Curve bound-is 
representive of the True S/N Curve. 

The Monte Carlo process used in predicting life time versus reliability of the 
M60 torsion bars had a prior application in a report by (1). Conceptually, this 
method is quite simple, requiring modelling of the spectrum loads and the material 
fatigue life with respect to crack propagation or stress/cycles to failure. 

D Amplitude isplacement Model 

In figure 1, a schematic of the torsion bar in the M60 Tanks is shown. The 
amplitude distributions of three bars from tests conducted at Aberdeen Proving 
Grounds (APG) is shown in figure 2 . Positive and negative angular displacements of 
the bars as function of tank travel are shown in figure 2a. In figure 2b the amplitude 
distributions are listed in a manner describing percent time less than by a plus 
sign (+) and percent time grater than by a minus sign (-), (eg. 25% level equals a 
-75% level. The + peak represents maximum angular displacement under load, the 
negative peak is maximum. unloaded angular measure. In order to eliminate 
considering positive and negative peak values in figure 2a for determining angular 
displacements in the cyclic loading process, the angular displacement is defined 
as follows, 



Ae=e+le-I 

where 8- = maximum negative angular displacement 

9 = displacement from figure 2b 

(1) 

A@ represents the adjusted angular displacement 

The Beta distribution provided the best representation of the skewed 
amplitude distribution. The dampening effects that occured under load resulting 
from a stop used in preventing further angular twist of the bar producing a highly 
skewed discrete cumulative probability values. The Beta function is defined as: 

D 

(be )P-l(l-Ae )Q-l 

and 0 5 A9'9 1 P, Q>O (2) 

The Pand Q values are selected in a manner that provides the best Probability 
Density Function (PDF) for representing the data. Figure 3 describes a typical 
distribution and Table 1 shows the excellent correlation between predicted 
(Beta representation) and actual test results. Angles less than 20° represent 
stresses sufficiently low that infinite torsion bar life could be expected, 
therefore,a good representation below this angle Is not essential. 

Crack Growth Law For Estimating Torsion Bar Life 

Initial efforts in applying the Monte Carlo Method for determining reliability 
vs cycles to failure of the torsion bar involved using the crack propagation laws. 
The da/dN relationships for materials metallurgically similar to the specified 
material were obtained from (2), (3), and (4) and is shown in figure 4. The dry 
air results made available by Barsom (4) provided the most representative estimates 

I 
of crack growth vs stress Intensity (AK) described in figure 4 since the torsion 
bar is protected from the environment. From the basic da/dN relationship, N cycles 
to failure as a function of crack growth, angular displacemeat and the geometry 
of the ,region where the crack initiates in the bar, may be obtained from'the 
following relationships: 

Cf 
N= I dc 

ci .66 x lo-8AK2’25 (3) 
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whereAK = A j A0fl 
and Ai = 4.91 (Key Way) 

A2 = 3.29 (Other Spline Regions) 

A3 
= 3.26 (Shaft Section) 

Note, a percent reduction 'in Ai 's will provide a decrease in the stresses in the 
specific region of the torsion bar. The C. and the C parameters are initial and 
critical crack size respectively. The C $s obtainedffrom critical stress inten- 
sity value K for the material considergd. The angular displacement of the bar )aan 
be also repr&ented by the equivalent stress valuez as 

Maxr= rG (Ae)/L 

r = radius of shaft 
G = torsional m,odulas 

A@ = max. allowed angle 
L = length of torsion bar 

(4) 

The Monte Carlo Process 

(A) Crack Propagation Analysis 
A schematic of the process is outlined in figure 5 for determination of 

frequency of occurence vs. cycles to’failure of the torsion bar using the crack 
Propagation law. An assumed normal distribution is used to represent variability 
in the Aj, Ci, and Cf parameters. A coefficient of variation (C.V.) defined as 

C.V. = S.D 
mean 

establishes the standard deviation S.D. for the corresponding known meall value 
(eg C. for initial crack size). 
consi.aered in devel 

C.V. values of 5, 10 and 15 percent were 
opingmthe distributions in order to examine the effects of 

variability (inherent errors ,in measurements, flaw size assumption or the stress 
analysis) in the parameters. By selecting the above C.V.'S a sensitivity 
analysis can be developed, thereby providing a method for recognizing the impor- 
tance of the parameters as related to cycles to failure number. The Beta dis- 
tribution as shown in figure 5 has been previously defined in equation (2). 

The random numbers used in the Monte Carlo process are obtained from 
solving for X in 

d fi dX = R 
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where R is a uniformrandom number and fi corresponds to the desired tYPe of . 
frequency distribution for the parameter. A probability density function for the 
N cycles to failure can be obtained by randomly selecting from C 
distributions of discrete sets of numbers and substituting them f 

, Cf, A , and A0 
nto equation 3. 

Note,-there should be an equal amount of random numbers for each parpmeter to 
have proper amount of numbers for the N distribution. 

(B) S/N Curve Analysis 

Torsional bar life expectancy was obtained using the Monte Carlo process 
applied to the S/N Curve relationship. The procedure provided a method for 
obtaining life time estimates of the bar by combining the effects of crack 
initiation and propagation. A description of the S/N Curve is shown in figure 
6, where the base line data was obtained from a literature,survey for material 
metallurgically similar to the torsion bar material. The survey provided a.set 
of S/N Curves for torsional fatigue shown below for hmt representing the current 
materials used in the bar. 

LoglON = B + .068& 

where B = 7.70 
(7) 

The slope value of ,068 was essentially the aame for all curves in the set. 
The adjustment in B from 7.70 to 8.06 made on the basis of M60 torsion bar quality 
assarance tests at a singleA0value performed at the Scranton manufacturing 
facility (See figure 6). A single load equivalent to a 42 degree angular dis- 
placement was applied during the quality assurance torsional fatigue test. Using 
the mean value and the cycles to failure in Figure 7 provided a more accurate 
estimate of (B). The curves representing a range of 10 and 20 percent reduction 
in bar stress are shown in figure 6. 

l 

The S/N Curve Monte Carlo process is similar to the previously outlined 
method for da/dN relationships. The primary difference involves using Models 
for (B) and A8 from figure 6 and 2 respectively. A schematic of the basic S/N 
representation is shown in figure 8a and 8b. In figure 8a simulation of S/N 
curve variability is shown for a specific value. 
density function (PDF) for (B). 

Figure 8b describes probability 
A random.selection of a discrete set of numbers 

fromA and (B) distributions is then applied to equation 7 in order to obtain 
Log 
are l8 

N value. The process is repeated until all values from the two distributions 
elected. This process will then provide a PDF to represent LogloN. 

Torsion Bar System Reliability 

By assuming a tank with a N torsion bar system the following procedures 
would be applied in order to establish reliability of the system. If any one 
bar could cause failure (independence) then reliability R will be 

EP -11 j 
P 

j 
- Prob. of Survival 

j=l j - Ph Torsion Bar 
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$f It is assumed that all torsion bars must fail for system failure (dependence) 
then, 

R = P1 X P2 / P1 X . ..X PN/PN-l/.../P 
1 (9) 

vhcre PNIPN,lI"JPl 
of N-l ---I 1 bars. 

is the reliability of Nth bar, given reliabiiities 

Reliability of Operation After Specific Number of Cycles 

The reliability of operating an additional number of cycles when a 
specified number of cycles of operation has been completed is obtained in 
the following manner. Initially it is assumed that a SDecified distribu- 
tion function say f(N) is known: 
from Monte Carlo method previously 

For example the distribution of LogI N 
described. 

is a 
The reliability R(nl, n 9 

conditional probability requiring the probability of operating for 
.nl + n cycles when n 1 cycles have been completed. That is 

R(nl + n) f f(K)dN (10) 
R(n1 + n) = 

R(y) 

where n is the additional mission in cycles after n 
The number N (n 

cycles of operation. 

adddtional nScyc I' 
n) of components (torsion bars) 4-i at will survive an 

es is given by 

Nshl n) = Ns $1 . R(nl n> (11) 

where Ns(n 1 ) = number of components starting the mission of n additional 
cycles. 

Results and Discussion 

The proper number of simulations for the Monte Carlo Method depended on the 
models under consideration. For example 5000 and 3000 were required for the 
da/dN and S/N curve models respectively. Using a convergence rate criteria for 
the calculated 1 percent values (see Ps in figure 9) and recognition of the third 
and fourth moment stability of the LoglON distribution provided an excellent 
method for determining required number of simulations. Differences in percentile 
values for C 
used for all.5 

's of 10 and 15 percent were minimum. The 10 percent value was 
calculations. 
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The torsion bar reliability results from the da/dN relationship as shown in 
figure 10. The current design results were obtained from equation 3, with A = 
3.29. They indicated relative limited lifetime range of 14 to 500 miles, wi 8 h a 
probability of survival values of .99 and -01 fespectively. An appropriate incr- 
ease in Cf from equation 3 represents the 40% increase in KIC value. This 
represents an improvement in materials capability with respect to.acceptance of 
lafger flaw sizes prior to failure. The slight improvement in the bars 
capability indicates that an improvement in material will not significantly 
improve bar performance. The 25 and 50 % reduction in K (stress intensity) in 
figure 9 is obtained from reducing A2 in equation 3 by t ii e respective percentages. 
These reductions represent improvements in the design of spline section of the 
bar as shown in figure 1. The K failure in the shaft represents situations 
where failure occurs in shaft ra &Jr then spline region. 

The maximum life of 70 miles at 25mph achieved from 50 percent improvement 
in spline design with.99 probability of survivability indicates that there is a 
very limited life of the bar after crack initiation. Table 2 describes minimum 
life estimates (99 percent survivability) for the torsion bar with respect to 
various tank velocities and the design improvements. Tank travel at Smph 
(lowest speed) with a 50% reduction in K value shows propagation life expectancy 
of only 341 miles at .9F P I 

s' 
In figure 11, the frequency distribution obtained from S/N curve - Monte 

Carlo application is shown. The resultant exponential form is consistent with 
that expected from the S/N modelled in the analysis. 

D 

A graphical display of Ps vs miles to failure is shown in figure 12 for the 
25 mph tank velocity. The life expectancy of the bar is somewhat greater then 
that obtained from the da/dN analysis. The minimum life estimates (*99Ps) of 292 
miles is 21 times greater than 14 miles determined from the da/dN results. This 
result indicates that most of bar life occurs prior to crack initiation. Therefore 
the torsion bar should be manufactured in such a manner that flaws are minimized. 
The current shot peening used in the manufacture of the bar indicates recognition 
of this fact by the manufacturer. The bar reliability estimate obtained after 
an assumed 741 miles of tank travel (see figure 12), was obtained from equation 
10. The increase in Ps from -90 to .99 if the bar survives the initial 741 
miles does not provide a sufficient gain to warrant re-using bars since the 
minimum increase in expected life is reduced very rapidly. The results from a 
20 percent reduction in design stress of 865 miles for a Ps of .99, is a 
considerable improvement when comparing that of 292 miles using in the 
current design. In table 3 the results from velocity ranging from 5 mph to 
25 mph in increments of 5 mph are shown with respect to current 10 and 20 
percent improvements in design. Reducing velocity of tank operation obviously 
Improves reliability of the torsion bar. In this report, the experimental data 
and reliability calculations refer to failure of the first bar. 

Examination of current design mileage capability of the bar for 20 and 25 
indicates a range from 276 to 292 miles. These results agree with the 

262 milts minimum life obtained from Aberdeen Proving Ground (APG) test results 
(Report KC-5376 of bar failure from 3 mile test course), (see figure 13).. 
This course and tank velocity were similar to those used in obtaining, the 
spectrum load results. The excellent agreement between the predicted and actual 
life expectancy of the bar indicates the desirability of Monte &rlo Process for 
modelling variability of spectrum loads (design stress) and s/N curve (material ' 
capability) results. 
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Although excellent agreement has been obtained, the authors would have 
preferred representing the spectrum load consistent with an individual peak to 
peak angular displacement. The simplification applied using the negative peak 
as base and representing the displacement relative to this value was a good 
approximation to the available individual displacements. This approximation would 
provide a slightly conservative estimate in the reliability valuesc Using the 
AST%recommended practice of representing lower 3 standard devlati& band of the 
S/N curve as measure of material fatigue loading capability combined with max- 
imum angular displacement (46 degrees) for 25mph. 
In a minimum life estimate of 112 miles for the bar. 

The tank operation resulted 
Selecting this number as a 

design allowable could result in au overly conservative estimate. The chance that 
this maximum displacement could occur and the S/N curve was the actual lower band 
described above is extremely small. 

A minimum life of 575 miles was obtained from using the maximumAedisplacement 
value with original S/N curve where .B= 8.06. This result is obviously wrong 
since the limited samples of 23 bar failures two of them failed at mileage less 
than 400 miles (See figure 13). 

Conclusions 

1. A methodology for obtaining reliability of the M60 tank torsion bar 
subjected to cyclic random loads has been developed where probability of 
survival is represented as function miles of tank travel. 

2. The developed methodology could be applied to other structures with 
cyclic random loads. 

3. The use of the method appears justified from recognition of the excellent 
agreement between predicted reliability estimates and those obtained from the 
actual bar life (miles to failure) experienced during the tank operation. 

4. Determination of minimum bar life was 21 times greater from application of 
S/N curve model than that of the assumed da/dN model. This indicates most of 
the bar life exist prior to crack initiation. 

5. Application of deterministic procedures, (use of lower 3 S.D bound for S/N 
curve (ASTM method) and mean S/N curve providing over and under design allowable 
estimates while Monte Carlo method outlined in the text values accurately 
described acceptable design values. 
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~60. Torsion Bar Fatigue Test Results (Pooled Data 1977 to 1982) 

Mean = 5.206 
Standard Deviation =.239 

Design Allowable 

A = 4.55 
B = 4.83 

Log Base 10 Cycles to Failure 

FIGURE 7 
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Torsion Bar Reliability - Probability of Survival vs Miles 
da/dN Relationship 
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Probability of Survival vs Miles 
S/id Curve Results 
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Spectrum &oad (Profile IV Course) - Beta Punetion Representation 

Cummulative 

Probability 

.lO 
-25 

8 (Degrees) 6 
Beta 

(Degrees) 

Test Results Representation 
Run 40 (5 mph) 

-14 -86 

4.4 5.8 

-34 

*SO 

.66 

-75 

-99 

-10 
-25 

5.0 

8.6 

12.5 

14.2 

17.0 

Run 42 (10 mph) 
14.0 

16.0 

7.2 

9.3 

11.5 
12.7 

16.7 

6.1 
19.2 

-34 22.8 21.5 
*SO 25.8 24.8 
-ii6 29.7 27.6 
-75 30.6 29.0 
l 99 

.lO 
-25 

32.6 

Run 48 (25 mph) 
2.3 

22.7 

32.5 

10.8 
26.2 

l 34 27.2 29.1 
-50 33.7 33.3 

.66 39.5 37.1 

-75 41.6 39.3 

B -99 46.0 46.9 

Cwnm1ative Time Probabilities of Torsional Bar Angular Displacement 
0 adjusted to positive range by 8 

negative angular displacement. 
= 8 +I ew.f where 0. = max. 

TABLET 
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Winimuy Life Estimates (991 Survivability) 
da/d?4 Curve Results 

Velocity Mileaqe Expected (Function of Spline Stress) 
(MPH) Current 258 Reduction 50% mdtition 

5 71.0 138 341 
10 29.9 51.9 143 
15 15.2 29.3 72.3 
20 14.0 26.9 66.3 
25 14.2 28.4 70;2 

TABLE 2 
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Monte Carlo Results for S/N Curve Minimum Life 
Estimate (99% Probability of Survival) vs Velocity (MPH) 

Velocity Mileage Expected 
w-1 Current Design 10% Design 20% Design 

Improvement Improvement 

5 6,974 9474 12970 

10 2,.000 3138 4420 

15 345 638 1089 
D 20 276 515 860 

25 292 557' 865 

*Note: A 99% survivability estimate of 262 miles was obtained from 
cummulative APG mileage on vehicx at time of torsion bar 
failure. Velocity of vehicle during tests was approximately 
15 to 25 mph. 

TABLE 3 
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RANDOM NUMBERS FROM SMALL CALCULATORS 

Donald W. Rankin 
Army Materiel Test and Evaluation Directorate 

US Army White Sands Missile Range 
White Sands Missile Range, New Mexico OOUO2 

ABSTRACT. Random number generators are notoriously wasteful of digits; 

however, applyinq- an augmented precision technique to a linear congruential 

generator enables one to produce on even a small calculator a set of pseudo- 

random numbers which contains a useful number of elements, This paper sets 

D forth such a method. 

1. INTRODUCTION. t%st modern computers and many programmable calcu- 

lators include in their softwares a function for generating "random" numbers. 

Such numbers are required any time a "Monte Carlo" test technique is 

employed. 

It is usual to tailor each algorithm to a specific type of use, and to a 

specific sire of computer. Probably it is not feasible to transfer such a 

tailored alqorithm to a calculator of smaller size--particularly to one of 

shorter word lenqth. 

Perhaps the most efficient and certainly .the most popular of these 

algorithms is the "Linear Congruential Generator." Mathematically stated, 

Xi+1 ~ (axi + c) mod m. 

All quantities are considered to be integers. If the modulus m be taken as 

snme power of ten (or of two if in binary), the modular operation is effected 

by simple truncation. 

Yost calculators have the ability to truncate at the decimal point. A 

decimal point, therefore, is inserted solely for this purpose. -- Conceptually, 

the numbers remain inteqers. 
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a 
Given that the modulus I m is some (positive inteqer) power of ten, it is 

found that the algorithm generates -a full set of m integers (ranging from 

zero to m-l, inclusive) whenever both 

a z 1 (mod 20) and 

c 1 (1, 3, 7, or 9) (mod 10). 

The selection of values for a and c is an important part of adapting the 

algorithm to a specific case. 

2. PSEUDORANDOM NUMBERS. Let us suppose that we have defined a set of 

m inteqers, all different. A random selection from the elements of this set , 

requires that for any element, the probability of selection be l/m. Since 

this probability remains unchanqed for subsequent selections, sampling with 

replacement is indicated. 

We wish to develop an algorithm that does not depend upon an outside 

stimulus. However, it remains necessary to provide a value for x0, SO that 

the process can begin, This value should be an element of the set, but the 

choice can be arbitrary. It is called the "seed." After each xi is 

computed and used, it serves in turn as the "seed" for the-next calculation. 

To avoid repetition, some programmers employ a date-time group from which to 

extract a value for x0. 

If any computed value of 

‘i+s+l’ (ax i + s f C)(mod m) 

a 
is ever equal to some previously used value of xi, the algorithm will repeat 

itself over a subset of size (s+l), exactly duplicatinq the previous cycle. 

If xi+1 = xiv it is found that s = 0, and the algorithm has already 

deqenerated into uselessness. To circumvent this, sampling without replace- 

ment is used. But this causes the probability of selection to increase as 

11 1 1 -* -9 -9 . ..a. 
s s-l s-2 s - (5 - 1)’ 
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Thus, the l:!st remaininq elenlent of the subset can be predicted with 

certainty. lr_ is, of course, equal t0 Xi* the seed which began the cycle, 

How then can we presume to use these sequences of numbers as "random" 

sequences? It is found that if the cycle length is very large (two hundrcd- 

fold would not be excessive) when compared with the quantity (of numbers) 

required, the sequence selected will exhibit certain of ttle characteristics 

associated with random sequences; 

The term "pseudorandom" is used to indicate that the sequence is 

qenerated by an algorithm so that each element is a function of its 
b predecessor. 

3. PARAMETER SELECTION. At this point, let us limit the discussion to 

the case 

l-l = 10% 

llell heinq a small, positive inteqer. Immediately 

v'iii- = 10e. 

It was observed in Section 1 that, under these conditions, maximum cycle 

length is achieved if c and m are relatively prime, and additionally a z 1 

(mod 20). 

There are other requirements, however. Foremost among these is the 
1 restr.jction that axi must never overflow the computer word length. 

Should this occur, digits will be lost from the right, interrupting the flow 

of the alqorithm and seriously shortening the cycle length. 

The formula for serial correlation is 

p = l - 6 (:> (1 - i) + E 
a 
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It can be seen that the numerator varies from -0.5 to t1.0 and that the two 

terns are of the same order of magnitude wherl 

The numerator can be reduced to zero by solving the assoc 

c/m. It is found that 

iated quadrat ic in 

C - = 1*1 & 
m 2 6 

Now 3. v.7 = 0.28867 51345 94812 88225 45743 90 , . , is irrational, so that 
6 

no element of the set can furnish a value for c which will reduce the 

numerator exactly to zero. It can, however, be made quite small, whence "a" 

can be set to a value somewhat less than& without adversely affecting the 

wrial correlation. 

At this point, it will be instructive to examine the sequence generated 

bv the followinq parameters:* 

X0 =0 
a = 81 

C = 788677 

m = 1000000 : 

This sequence is found in Table l-1. The entries are to be read as integers. ( 

It is easy to observe that the least significant digit (units digit) is 

not "rand0n-P at all, since it can be predicted exactly. In the case at hand, 

*All examales in this paper will assume an a-diqit calculator. 
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TABLE l-1. 

CYCLES OF DIGITS 

a = Nl C = 71jcc77 

m = 1,ooo;ooo x0 
= 0 

0 .634457 0.137237 
0.220154 0.404574 
0.624391 0 054471 . 
0.364348 0.549828 
0, -300865 8.324745 
8.158742 0.093022 
0.646779 0 I323459 
0.177776 0.988856 
0.188533 0.886013 
0- 859.350 8 l 55573a 

0- 636527 8.882507 
El.347364 Q . 8 1 6 8 4 4 
0.3251Gi 0 _ sss24 1 
8.72iS?lS 8.736198 
0.652535 0.420715 
0-668312 0.366592 
0.321949 0.9552029 
0.466546 0.. 381626 
0.578903 0.709383 
0.679820 8.519700 

0.854097 
’ 0- 970534 

0.401931 
0.3450B8 
0- 740805 
0.793382 
0.043119 
0.331Zl6 
0.625273 
0 I435790 

0.884377 
El.423214 
0.069011 
0.37856E 
0.452685 
0.456162 
0.737799 
0.550396 
0 r 370753 
0 819670 m 
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it cycles through all ten digits, then repeats itself exactly. The two least 

siqnificant digits, viewed as a single number, exhibit a similar cycle. R 

qood generator will continue this effect until a cycle of length m is 

achieved. If m is a power of 10, this maximum cycle length is obtained 

whenever both of the following conditions are met: 

1. a = 1 (mod 20) 

2. c and m are relatively prime. This requires only 

that the final (\!!!!tbj digit of c be 1, 3, 7, or 9. 

As an aid to continuinq the study of the cycling effect, let us define a 

as = as (mod m) 

and 

CS 
= c (1 + a + a2 +... + as-l)(mod m). 

Given a = 81, s = 10, c = 788677 we find 

,.a10 = 928801 

Cl0 = 939970 

Note that, since x0 = 0, cl0 appears in the 'tenth position in Table l-1. 

Now cl0 may be viewed as having only five digits. It is therefore completely 

exercized by a five-digit multiplier, and we need merely use the last five 

digits of alo, The parameters 
I 

yO = 0 

alo = 28801 

Cl0 = 93997 

ml0 = 100 000 

will qenerate the sequence xlo, x2o, x30, . . . . 
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At firct glance, this appears to exceed the calculator word length. 
However, if we multiply xi (aLo-1) and then truncate, the algorithm will run -- 
without difficulty. To express the complete formula 

X i x (a - l)(mod m) + x + c (mod m) 
itlO i 10 i 10 

It is convenient to compute a, by means of the binomial expansion. Hence 

(1 + 80)10 = 1 + lO(80) + 45(6400) + 
t 120(80)3 + 210(80)‘+ + 
t 252(80)5 + immaterial terms 

The previous strategem will thus be available whenever s is a multiple of 

ten. The sequence thus generated is found in Table l-10. 

In a similar manner, the procedure can be reiterated and the sequence 

x1oo, xzoo, xSoo, . . . generated. Required values of the parameters are: 

xO =0 

alOO = 8001 

500 = 5197 

mlOO = 10 000. 

This sequence is illustrated in Table l-100. 

I 
The process can be carried no farther. To do so results in alOO = 1, and 

the algorithm degenerates to the successive multiples of x1ooo. This can be 
observed by looking at every tenth entry in Table l-100. The phenomenon can 

be called a "quasi-cycle" of length 1000 and additive constant 197. 1'~ 

appears that original values of "a" congruent to 1 (mod 100) will hasten this 

effect and therefore should be avoided. Further scrutiny reveals that the 

"quasi-cycle" is actually of length 500 and additive constant 598.5. 
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0” 93’3’37FJ 

0 _ El 1 5.3 4 0 
0.027910 
0 .775880 
0.059850. 
0.679526 
Q-435796 
0.127760 
a. 555730 
a.519700 

0.053778 e I ?y?75y?Q 

0.574748 0 .733:54Q 
0.021;710 0.625518 
0.214680 0 -253480 
0.938650 0-417450 
0" fiqp.>z$j 0.917420 
0. 1945’30 0.553390 
Ia -.326560 B"l25360 
0.194530 0.433330 
0.598500 8.277308 

0.814670 0.338470 0.4572?0 
0.255640 0.214440 0.77'3240 
0.627610 0.026410 0.025210 
0-735580 0.574380 a.913180 
0.379550 0,6S8350 0.537150 
0.359520 0.078320 a-397120 
0" 475496 0.634290 0.393890 
0.527460 a-126260 a -325060 
0.315430 0.354230 0.993830 
0-639400 8.118200 8.197800 

0.299370 01215170 a.736970 
0-095340 0.454140 0.412940 
0.827310 0.626110 0.924910 
0.29521@ 0.534680 0 .37281@ 
a- 239250 Q- 978050 0 _ ):3655(-j 

0" 639220 0-758828 0.476:328 
0.115190 a. G73990 0.83273Q 
8.527160 0-525960 0.124760 
a. 675136 0.113930 a-i 52730 
8~359100 0.237908 8.716708 

0.697570 rd.616678 
0 ., 2938463. 8 1 G rr;264 8 
Q"825810 8-624610 
8,093780 8"332588 
0.897?50 B-576550 
0.837720 0-156520 
6.31.3690 Q-872498 
0.525660 a-5244ei0 
8.473630 0.912430 
8.957600 8-EZEm460 

TABLE l-10. 

CYCLES OF DIGITS 

alO = 28801 

m = 100,000 

Cl0 = 93397 

xO = 0 

a 
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TABLE l-100. 

CYCLES OF DIGITS 

8.513760 
8 I6334B0 
0.3591630 
0.678300 
B I538500 
0-118200 
0-237900 
0.957600 
0.277300 
0.177000 

b 

01716700 
0.336400 
0-556100 
0.875300 
0.795508 
0.315200 
0.434980 
0.154600 
0.4743Qk3 
8.394880 

0.713700 
0.033480 
0.753100 
0-072800 
0.972500 
0.512200 
0.631900 
0.351600 
0.671300 
0.571000 

Q. 118700 
0.230400 
0.958100 
0.265880 
0.189500 
0- 703280 
0: 828900 
Qw 548600 
0.868300 
0.788000 

alOO = 8001 

mlOO = 10,000 

0-307780 0.0457QQ 
8.427400 0.215400 
0. 147100 0.9351823 
0.466800 0.254808 
8.386500 0.174500 
8.986200 0.654260 
8.025900 0.813900 
0.745600 0.533600 
0.065300 0.353300 
8.985000 0.773008 

0.504700 0.292700 
0.624400 0.412400 
9.344100 0.132100 
0 w 663800 0.451800 
0.583500 0.371500 
0. 103200 0.8912Q8 
8.222908 0.010900 
0-942600 0.730600 
0.262300 0.050300 
0-182000 0.970000 

c 100 = 5197 

0.701700 0.489780 
0.821400 0.609408 
0.541100 0.329100 
0.860800 0.648808 
0.780500 0.568500 
0.300200 0.088200 
0.419900 0- 287980 
0.139600 0.927680 
0.459300 0-247300 
0-379000 0.167000 

0.398788 0.686788 
0.018400 0.806488 
0,738100 0.526100 
0.057800 0.845300 
0.977508 0.765508 
0.497280 0.285200 
0.616900 0.404980 
0.336600 01124600 
0-656300 0.444300 
0.576080 0.364000 
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The conclusion to be drawn is this: Even though the values of a and c 

be chosen so that the algorithm generates the full cycle of m integers 

before repeating, the number of elements of any "useful" subset probably does 

not exceed :fi- What is needed is a device to increase the effective word 

length of the calculator. How this can be done forms the subject matter of 

the next section. 

In summary, let us view the number axi t c before truncation. 

Obviously, the left-hand (most signifirantj digits are lost via the modular 

operation, leaving 

xi+1 z (axi + c)(mod m). 

Now the xi can assume, at most, "ml' different values. Therefore, since both 
II ,I' and "c" are fixed, the quantity axi + c also can assume, at most, "m" 

different values. What this means is that, provided the values of "a" and "cl' 

are selected to produce maximum cycle length, the act of truncation does not 

reduce the quantity of numbers--only their size. It also shuffles their 

order. 

What remains is, of course, xi+l. It is usual to regard several of 

the right-hand (least significant) digits as "not significantly random." They 

are retained, however, for smooth operation of the algorithm, and to ensure 

that the full complement of "ml different numbers is delivered. 

4. AUGMENTED PRECISION ARITHMETIC. 

-'Double precision arithmetic is available in the software of many 

computers, and even in some calculators. It is cumbersome to program and 

executes very slowly. This is particularly true with division. 

However, the algorithm for the linear congruential generator does not 

employ division. Moreover, since a2 < m, the word length (mfi - 1) is 

sufficient. 
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Let m = 102e, where e is any small positive integer. The 

"auqmented" biord consists of three parts, each of which consists of "e" 

diqits. 

Let US express Xi in the form 

xi = lli x loe + vi 

Thus a, ~1, and vi are all inteqers less than fi, and the product of any 

two of them will not cause overflow. 

l Some calculators will compute (but not necessarily display) an extra 

diqit. For them, the procedure is extremely easy. First-, compute 

(aui x 10e)(mod m). 

To this quantity, add (avi + c) and truncate again. The result is 

'i+l' 

When place for an extra diqit is lackinq, it is necessary to devise a 

procedure which avoids overflow. The following method, which assembles 

Xi+1 by Parts, beginninq at the riqht, works quite well. 

As before, express xi in the form 

X. 
1 = 'i x 

l In analoqous fashion, express "c" as 

c=px 

loe + Vi' 

loe + q, 

Store p, q, ui, and Vi separately. Se lect "aI so that 

a < 10e 

a z 1 (mod 20) 

a f 1 (mod 100) 

213 



. . . . . a 
It will be found that a < 10e - 18. Consequently, multiplication by 

parts will net produce overflm. 

We have immediately 

"I+1 F (avi + q) mod 10'. 

Since we wish to retain both parts of (avi t q), we canpute (avi + 

q) x lo'@, then "FJJC" ((avi + q) x 10'e),* 

Vi+1 is now stored, replacing Vi. Then ui.+l ! ("Ui + o + 

lOe(avi + q - vitl)) mod 10e. 

The sequence of numbers generated by 

xO =0 

a = 9941 

C q 2113 2487 

m = 100 000 000 

is displayed in Table 2-I. 

5. RANDOM SELECTION. RANDOM ORDERING. 

So far, an algorithm has been developed which will generate a full set of 

m pseudorandom nunbers. However, the length of a useful sequence of these 

nunbers is, at best, uncertain and doubtless does not exceed b-- ~krn. 

a 
‘if a subset of far smaller but exactly known size is to be placed in 

random order, or if random selections from its elements are to be made, the 

following can be done. 

*"FRC" means "fractional part of." 
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Storarle soace must he provided to accommodate all the elements of the 

subset, plus one more. It may be possible that scratch-pad storage is 

adequate. 

Let us illustrate the method by example. Suppose the task at hand is to 

shuffle a pack of 52 playing cards, i.e., to place them in random order. We 

thus require 53 storage registers, which we number from 00 to 52, inclusive. 

The individual card names are entered into registers 00 through 51 in any 

arbitrary order, N = 52 is the subset size. 

We employ the generated sequence of numbers given in Table 2-l. These 

nunbers (integers) should be distributed uniformly on the interval 0 to m. 

Dividing by m, then multiplying by 52, yields a sequence uniformly distri- 

buted on the interval 0 to 51.99999 , , . . The "integer" portion'of thi r 

nunber is used as-an address for selecting a card. That card is then placed 

in storage register 52. 

Next, all cards with location nLanbers greater than the "selected" 

location are cascaded downward one position. This includes the card placed in 

register 52. So far, the illustrative example has given 52 x 0.21132487 = 

10.988 . . . , The card in location 10 was drawn and stored in location 52. 

Say it is the Spade Jack. 

After cascading, only 51 cards are of interest, Hence 51 x 0.99185754 = 

50.584 . . . 1 The card in location 50--the King of Clubs--is drawn and 

placed in register 52. Again after cascading, the subset of unshuffled cards 

is reduced to 50 in nunber. Hence 50 x 0.26713001 = 13.356 . . . , The card 

now in location 13--the deuce of Hearts--is drawn and placed in register 52. 

Continuing as above, 49 x 0.75075428 = 36.786 , . , . The card in 

location 36--say the King of Diallonds-- is selected and placed in location 52. 

When the size of the unshuffled subset is reduced to unity, that card 

certainly will be found in location 00, and it certainly will be selected for 

transfer to location 52. Consequently, that transfer can be effected without 
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TABLE 2-l. 

CYCLES OF DIGITS 

a = 9941 

m = 100,000,000 

C = 2113 2487 

X ,=o 
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D employing the algorithm. Further, cascading can be omitted or not, at the 

pleasure of the progranmer. 

The final result is the shuffled deck, in order of selection, in the 

designated storage locations, hitting the final cascading, the example 

leaves the Spade Jack in 01, the Club King in 02, the Heart deuce in 03, the 

Diamond King in 04, etc. The shuffled deck can new be put to the use for 

which it was intended, 

If there is a requirement to "deal" the cards one at a time, it is 

suggested that the card in the highest nunbered location be taken first. Not 

only is the programming simpler, but the stigma is avoided which usually is 

l attached to dealing from the bottom. 

In sunmary, a set of uncertain size has been used to produce a much 

smaller subset of known, fixed size. 

6. STATISTICAL TESTS. There is much to be found in the literature on 

the subject of testing sequences of nunbers to determine whether or not a 

sequence could have been produced by .a random selection process. These 

methods will not be repeated here. 

It is enough to be reminded that the answers to these statistical tests 

will be stated as probabilities. We should read nothing into the result 

beyond the probability statement itself. 
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ABSTRACT. A paper was presented at the Twenty-Eighth Conference on the Design 
of Experiments about estimating the variance of the loss exchange ratio (LER). 
The LER is a measure of force effectiveness that 'is often used in military 
analysis of combat. Two methods of estimation were discussed: (1) the method 
of error propagation, and (2) the application of Fieller's theorem. The 
discussion that followed the presentation and further references to the 
literature pointed to Fieller's method as the preferred methodology to use to 
estimate confidence intervals about this measure of force effectiveness. 
Professor Bradley Efron (Stanford University) presented an overview of bootstrap 
methods. Dutoit and Shannahan have applied bootstrap methods to d.sta to compute 
an estimate of the LER. Confidence intervals were also determined. The 
distribution of LERs about the mean value derived from the bootstrap have been 
compared to results using error propagation and Fieller's theorem. The results 
of this comparison as well as the bootstrap sensitivity to different replication 
sizes are presented. 

c 1. INTRODUCTION AND BACKGROUND. 

a. Error Propagation and Fieller. As pointed out in reference (2), the 
LER is defined as the ratio of Red casualties (R) to Blue casualties (B): 

LER = R/B. (1) 

Usually the values of R ar;td B are obtained-by replicating a stochastic wargame 
model. The average LER (LER) is computed as: 

L:R = iT/f (2) 

Because the generators of these average values are the results of a stochastic 
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wargame, it would be useful to determine a confidence interval around the a 
measure for various forms of hypothesis testing. Using error propagation 
methods, reference (2) shows that the variance of the (LER) can be estimated as: 

BAR(L>R) = 1 ; [(+% + (+2)% + 2 (+)($2) R 'R SB] (3) 

L ’ 

The appropriate lOO(1 - a ) confidence 
calculated as: 

lOO(1 - ~1 ) C.I. (LER) 

Similarly, reference (2) also shows that 
the fiducial limits of the ratio of two 
lower limits (R,, ,),can be found as the 

interval (C.I.) for the LER would be 

Fieller's theorem can be used to find 
means. In this case, the upper and 
solution of a quadratic equation and 

are: “*JJ I 

RU,L = i% - t2RS S B R 

n 

+$ - t2RIBSR)2 - r - t2[$2 - t2 (31 (5) 

In operations (2), (3), (4), and (5) the following notation is used: 

(a) F, B are the average number of Red and Blue casualties, 
respectively. 

(b) n is the number of stochastic wargame replications. This is 
used to calculate 8, 8, SB, SR, and 9. 

(4 SR' SB are the sample standard deviations for Red and Blue 
casualties. 

(d) R is the correlation between Red and Blue casualties based on n 
replications of the wargame. 

(e) t is the two tailed value of the student's t with (n-l) degrees l 
of freedom. 

The discussion that followed the presentation of this paper and further 
references to the literature pointed to Fieller's method as the preferred way 
(compared to error propagation) to compute a confidence interval about a ratio 
although there was an indication that both error propagation and Fieller's 
method to give "reasonably" consistent results. 

b. Bootstrap. The purpose of this paper is not to provide a detailed 
description of bootstrap methods. Reference (1), entitled "Computer-Intensive 
Methods in Statistics" is a readily available and clearly worded explanation of 
the boots-trap method co-written by one of the bootstrap inventors (Efron). 
Figure 1 below shows how the bootstrap method was applied to sets of data to 
compute.estimates of the LER and the frequency distribution of these estimates. 
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Or igina: 
paired Data 

Ranccm Sample 

iired Ijata 

Do r:!i5 a iirge aumkr of times 

{i.e., 300@, 1000, etc. ) 

I 

FIGURE 1. APPLICATION OF THE BOOTSTRAP METHOD TO 
ESTIMATE THE LOSS EXCHANGE RATIO (LER) 

Each replication (l,2,3, . . ..n) of the stochastic wargame provides a set of 
paired data (i.e., 
replacement), 

Red and Blue, casualties). Through random selection (with 
another set of data of n paired observations is selected from the 

original data set. From this additional sample, the values of 'i and B are 
obtained and the value L'& is computed. This value of L%R is stored in the 
computer memory. This bootstxap process is done a large number of times (3000, 
1000, etc.) and the sample LER is stored for each additional sample. At the 
completion of a large number of bootstrap runs, the frequency distribution is 
printed and the average LER, as well as the appropriate confidence limits, are 
determined from this empirical distribution. These LER estimates, and the 
confidence limits derived from the bootstrap, were compared to results using 

l error propagation and Fieller's theorem. The results of this comparison as well 
as the bootstrap sensitivity to different replication sizes (3000, 1000, 750 
500, 250, 100) was studied. 

2. ASSUMPTIONS AND CONSTRAINTS. The following assumptions and constraints 
apply to this study. 

a. This is a case study based on actual data obtained from the 
CARMONETTE stochastic wargame. The findings or observations should be 
interpreted as emerging trends with respect to LERs within the constraints of 
the forces and systems modeled using this wargame. Perhaps this paper will 
serve as a catalyst for some additional theoretical studies using bootstrap 
methods to estimate measures of force effectiveness. 

221 



b. It is assumed that the Radio Shack TRS-80 Modoel II (64K) system 
random number generator produces a statistically valid stream of 36,000 random 
numbers (minimum). 

C. The emerging findings or trends apply to 99, 95, 90 and 85% 
confidence intervals. 

d. Estimates of the average value of the LER(LtR) are carried out to 
the nearest tenth. This measure of force effectiveness is a rough indicator and 
estimates made with any greater precision are not considered to be operationally 
meaningful. 

3. THE SOURCE OF DATA USED IN THIS STUDY. The data used in this case study 
were obtained from a force-on-force evaluation of several medium antiarmor 
systems which were employed within an Infantry force and scenario. Twelve 
medium antiarmor concepts were examined (denoted as case A, B, C, ..,, L). All 
medium antiarmor concepts were inserted in the same force and fought against the 
same threat on the same terrain. All other factors were held constant, 
therefore the differences in average Red and Blue casualties are attributed to 
the performance factors and synergistic influence of the different antiarmor 
systems. Table 1 below shows the input to this case study for each of the 
twelve antiarmor systems (cases A through L). The Red and Blue casualties are 
given in the format (xx/xx). Therefore, case A, replication 1 had 112 Red 
casualties and 24 Blue casualties. The other variable notation has been defined 
earlier in this paper. This represents the total input required to do the 
bootstrap experiment and compute the confidence interval estimates using error 
propagation and Fieller's theorem. 

4. RESULTS. Tables 2, 3, 4 and 5 show the results of the bootstrap 
experiment and the error propagation and Fieller's theorem results for 995, 95;%, 
90% and 85% confidence intervals, respectively. The results of the bootstrap 
method are based on 3000, 1000, . . . , 100 replications. The upper limit (UL) and 
lower limit (LL) are given for the stated level of confidence for all estimates. 
The average value of the LER(L!&) . 1s given for each bootstrap replication size 
in addition to the estimates obtained from error propagation and Fieller'a 
theorem. The width of the confidence interval is given as the difference 
between UL and LL. For example, refer to Table 2. The case A 99% confidence 
statement of the bootstrap estimate based on 3000 replications is 5.2 for the 
LER. The upper and lower 998 confidence limits are 6.1 and 4.6, respectively. 
The width of the confidence interval is 1.5. Fieller's theorem gives upper and 
lower 99% confidence limits of 6.5 and 4.3 with an interval width of 2.2. Error 
propagation statistics were 5.2 for the estimate of the LER and 6.2 and 4.1 for 
the 99% confidence limits. 

5. EMERGING TRENDS. The following emerging trends are based on the results 
shown in tables 2 through 5. These trends should be interpreted with respect to 
LERs appropriate to the forces and systems modeled using this wargame. 

a. The upper and lower confidence limits and the LER estimate (L?R) are 
relatively insensitive to the replication size (from 3000 to 100) for the four 
levels of ~1 examined in this study. This was true for all 12 cases (A through 
L) for the 95, 90 and 85% confidence levels and true for about 3/4 of the cases 
at the 99% confidence level. 
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D b. The bootstrap confidence interval is consistently shorter than 
intervals generated by either the error propagation or Fieller's theorem method. 

c. Regarding the 99% and 95% confidence intervals, the bootstrap and 
Fieller's theorem interval estimates tend to yield LER distributions with 
positive skews. This effect is slightly stronger for the 99% confidence 
interval than for the 95% confidence interval. This same effect is also true 
for 90% and 85% interval estimates but not to the same degree as for the 99% and 
95% intervals. In fact, the effect is relatively negligible for these two 
cases. 

d. Regarding the 99% confidence interval. the bootstrap lower limit is 
better approximated by the Fieller's theorem estimates and the bootstrap upper 
limit is better approximated by the error propagation estimate. Although these 
findings are relatively consistent across all 12 cases, the degree of agreement 
is not always good. 

b e. Regarding the 95% confidence interval, neither the error propagation 
or Fieller's method has a strong advantage in approximating the bootstrap 
interval estimates. However, when the error propagation results do a better job 
in approximating the bootstrap estimates, it generally better approximates the 
upper confidence limit. The Fieller's theorem method most often approximates 
the bootstrap lower confidence limit. These 95% findings are consistent with 
the findings for the 99% confidence interval. 

f. Regarding the 90% and 85% confidence intervals, the error 
propagation and Fieller's theorem estimates are, for the most part, good 
approximations to the bootstrap results. 
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TABLE 1. INPUT DATA REQUIRED FOR CASE STUDY 
(htled on Force-on-Force Model) 

I i12/24 68/34 19/y 99/21 112/15 128/23 99/21 103/26 gal20 s/72 64/22 57129 

2 108/15 ‘j2/24 103/21 lOOI 105/22 110/21 II/30 120116 100/17 75/69 IO/24 80/24 

5 110/1-l 93/24 95/23 i19/1a 93121 S/23 86/28 118/24 105121 Ii/55 -6-l/25 88119 

4 103/21 03/30 99/22 104/24 112/23 91/23 ES/28 112124 96/18 73/51 121/21 59/24 

5 IO')/20 5G/29 92/23 102121 92125 101/23 03/25 116113 109/20 51121 '14/25 

6 112/25 60131 105/w 9a/25 iii/17 66130 U/26 

'I 100122 96/23 110/1a 105122 66/26 70123 

u loa/ w/30 99/25 TO/27 7312'1 

9 74/x lOD/17 52/25 71/29 

0 60129 

1 78125 

;’ 56/28 
--_l,-_.-_-_.-.-_ . . _-._-._--- - 

5 4 12 '9 
.- 

101.60 60.75 69.00 159.89 
---. --. 

4.23 12.85 5.32 8.66 18.13 11.56 
--.. ..- _._,_,_- --. -_---_-- -- ,~ 

20.00 28.78 22.60 19.20 63.25 25.25 25.11 
_,.-,--..- . . . . ,, _,,, ,.._ _ -_,. ..__... 

5 3.44 4.21 1.14 3.80 3.71 2.21 3.51 5.73 1.64 8.50 2.96 3.14 
.,, ..,., -. .__I._ ,._. --_,,, ,..-,. _ ,,_.,, ^... .,-.- ----- ., _._"., ." _-I__, ,....,, -, ..,,. _, ..-__- .-. .- ,. -~.-------. .- --------~------------- r------ 

11 .ll -.“ju -.93 -.4-t -.56 -.27 -.84 -.62 .55 -.55 -.31 -.63 .- .-.- -I...-l-_*-.----- 
h 
':I1 5.lG 2.63 1.14 4.4 4.67 4.81 3.28 5.52 5.29 l.Og' 2.74 2.78 

-- ---.----- _..- -._.---- 

3.499 3.355 4.604 
.99 ,_ 

3.355 4.032 3.107 4.604 4.604 4.604 5.041 3.106 3.355 

-95 
2.365 2.306 2.716 2.306 2.571 2.44'7 2.776 2.176 2.116 3.182 2.201 2.306 

..-.-_-_ --- --.-- . .._. -_.-.-.r-- .-.-- 

. go 
1.895 1.1360 2.132 1.860 2.015 1.943 2.132 2.132 2.132 2.353 1.796 1.060 

. -.-.-- ---- _*---- _--- -,--- 

. U'j 1 .Gl’7 1 .592 1 .7-/g 1.592 1 .G99 1 .620 1.779 1 .I'19 1.779 1.925 1.549 1,592 
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TABLE 2. 99% CONFIDENCE INTERVALS FOR LER 

CASE 

A 

B 

C 
l 

D 

E 

F 

G 

l H 

I 

J 

a 

UL 6.1 6.2 6.1 6.1 6.0 5.8 
LER 5.2 5.2 5.2 5.1 5.2 5.1 
LL 4.6 4.6 4.6 4.6 4.6 4.7 
Width 1.5 1.6 1.5 1.5 1.4 1.1 

UL 3*4 3.3 3.4 3.6 3*4 3.4 
LER 2.6 2.6 2.6 2.6 2.7 2.7 
LL 2.1 2.2 2.1 2.2 2.2 2.2 
Width 1.3 1.1 1.3 1.4 1.2 1.2 

UL 4.7 4.7 4.7 4.8 4.8 4.7 
LER 4.1 4.1 4.1 4.2 4.2 4.1 
LL 3.6 3.5 3.6 3.5 3.3 3.5 
Width 1.2 1.2 1.1 1.3 1.5 1.2 

uii 5.8 5*8 5.9 5.8 5-v 5.7 
LER 4.9 4.9 4.9 4.9 4.9 4.8 
LL 4.2 4.1 4.2 4.2 4.2 4.3 
Width 1.6 1.7 1.7 1.6 1.7 1.4 

UL 6.2 6.1 6.3 5*9 6.1 6.3 
LER 4.7 4.7 4.7 4-7 4.7 4.7 
LL 3.9 3.9 3.8 3.9 3.9 3.9 
Width 2-3 2.2 2.5 2.0 2.2 2.4 

UL 5.7 5.7 5 l .7 5.8 5.8 5.4 
LER 4.8 4.8 4.8 4.8 4.8 4.8 
LL 4.0 4.0 4.1 4.0 4.1 4.2 
Width 1 l 7 1.7 1.6 1.8 1.7 1.2 

UL 4.3 4.4 4.1 4.4 4.0 4.4 
LER 3-3 3*3 3.3 3*3 3.3 3.4 
LL 2.7 2.7 2.7 2.7 2.7 2.7 
Width 1.6 1.7 1.4 1.7 1.3 1.7 

UL 8.3 8.0 
LER 5.6 5.6 
LL 4.2 4.2 
Width 4.1 3.8 

7.6 
5.6 

;:; 

8.4 8.0 7.2 13.9 9.1 
5.7 5.6 5.5 (5.5) 5.5 
4.2 4.3 4.1 3.2 1.9 
4.2 3.7 3.1 10.7 7.2 

UL 5.7 5.8 5*7 5*7 
LER 5.3 5*3 5*3 5.3 
LL 5.0 4.9 4.9 4.9 
Width l 7 -9 .8 .8 

5.8 
5.3 
5.0 

.8 

UL 1.3 1.3 1.3 1.3 
LFJR 1.1 1.1 1.1 1.1 
LL .8 .8 .8 .9 
Width .5 l 5 05 -4 

5.7 
5.3 
5.0 

.7 

1.3 
1.1 

.v 
-4 

1.3 
1.1 

.9 

.4 

3000 1000 
BOOTSTRAP 
750 500 

225 

100 
FIELLER'S ERROR 

THEOREM PROP. 

(Z) 
4.3 
2.2 

6.2 
5.2 
4.1 
2.1 

(Z, 
1.9 
1.7 

3.5 
2.6 
1.8 
1.7 

(22) 
3.0 
2.5 

5.4 
4.1 
2.9 
2.5 

(g) 
3.9 
2.3 

6.0 
4.8 
3.7 
2.3 

6.4 
4.7 
2.9 
3.5 

($:6) 
. 

2.6 

6.1 
4.8 
3.5 
2.6 

(Z) 
2.1 
3.2 

4.7 
3.4 
I .8 
2.9 

& 
4.6 
1.6 

6.1 
5.3 
4.5 
1.6 

(E) 
.5 

1.7 

1.8 
1.1 

-4 
1.4 



CASE 

K TJL 
LER 
LL 
Width 

L UL 
LER 
LL 
Width 

TABLE 2. 99% CONFIDENCE INTERVALS FOR LER (coNT'D) 

BOOTSTRAP FIELLER'S 
3000 1000 750 500 250 100 THEOREM - - - - - - 

3.5 3.5 3.5 3.5 3.6 3.4 2.7 2.7 2.7 2.8 2.7 2.7 (2,") 
2.3 2.7 2.3 2.4 2.3 2.3 2.0 
1.2 1.2 1.2 1.1 1.3 -9 1.6 

3.5 3.5 3.5 3.5 3.5 3.5 2.8 2.8 2..8 2.8 2.8 2.8 (Z) 
2.3 2.3 2.3 2.3 2.3 2.4 2.1 
1.2 1.2 1.2 1.2 1.2 1.1 1.6 

ERROR 
PROP. 

3.5 
2.7 
2.0 
1.5 

3.6 
2.8 
2.0 
1.6 

a 
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TABLE 7. 95% CONFIDENCE INTERVALS FOR LER 

CASE BOOTSTRAP 

A 

B 

C 

l 

D 

E 

F 

G 

+ H 

I 

J 

m 

UL 5.9 5.8 5.8 5.9 5.8 5*8 
LER 5.2 5.2 5*2 5.2 5.2 5*2 
LL 4.7 4.7 4.7 4.7 4.7 4.7 
Width 1.2 1.1 1.1 1.2 1.1 1 .l 

UL 3.2 3.1 3.1 3.1 3.2 382 
LER 2.6 2.6 2.6 2.6 2.6 2.7 
LL 2.2 2.2 2.2 2.2 2.2 2.3 
Width 1 .o l 9 l Y l 9 1 l o l 9 

UL 4.6 4.6 4.6 4-6 4.6 4.6 
LER 4.2 4.1 4.1 4.1 4.1 4.2 
LL 3.7 3.7 3.7 3.7 3.7 3.8 
Width *9 .9 .9 l 9 .9 .8 

UL 5.6 5-5 5.6 5-6 5.4 5.4 
LER 4.9 4.9 4.9 4.9 4.8 4*9 
LL 4.3 4.3 4.3 4.3 4.3 4.4 
Width I.3 1.2 1.3 1.3 1 l l 1.0 

UL 5.7 5.7 5*6 5.7 5.7 5.8 
LER 4.7 4.7 4.7 4.7 4.7 4.6 
LL 4.0 4.0 4.1 4.0 4.0 4.0 
Width 1.7 1.7 1.5 1.7 1.7 1.8 

UL 5.5 5.5 5.5 5.4 5.5 5.4 
LER 4*8 4.8 4.8 4.8 4.8 4.8 
LL 4.2 4.2 4.3 4.2 4.2 4.2 
Width 1.3 1.3 1.2 1.2 I.3 1.2 

UL 4.0 3.9 4.0 
LER 3.3 3.3 3.3 
LL 2.8 2.8 2.8 
Width 1.2 1.1 1.2 

UL 7.3 
LER 5.6 
LL 4.4 
Width 2.9 

UL 5.6 5.6 5.6 5.6 5.6 5.7 
LER 5.3 5*3 5.3 5.3 5.3 5.3 
LL 5.0 5.0 5.0 5.0 5.0 5.1 
Width .6 .6 .6 .6 .6 .6 

UL I-3 1.3 
LER 1.1 1.1 
LL .Y -9 
Width 94 .4 

;:2 
4.5 
2.8 

750 500 - - 

;:; 
2.0 
1.2 

4.0 4.0 
3.3 3.3 
2.8 2.8 
1.2 1.2 

7.4 7.2 7.4 7.4 
5.6 5.5 5.6 5.5 
4.3 4.3 4.3 4.4 
3.1 2.9 3.1 3.0 

1.3 
1.1 

-9 
.4 
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l-3 
1.1 

l 9 
04 

1.2 
1.1 

.9 

.3 

100 
FIELLER'S ERROR 

THEOREM PROP. 

C;:;) 
4.5 
1.4 

5.9 
5.2 
4.4 
1.5 

(2) 
2.1 
1.2 

3.2 
2.6 
2.1 
1 .I 

(Z) 
3.4 
1.5 

4.9 
4.1 
3.4 
1.5 

5.6 
4.8 
4.1 
1.5 

5.8 
4.7 
3*5 
2.3 

(Z, 
4.0 
1.7 

5.7 
4.8 
4.0 
1.7 

(Zl 
2.5 
1.9 

4-2 
3.3 
2.4 
1 .7 

GZ, 
3.9 
4.9 

7.7 
5.5 
3.3 
4.4 

(E, 
4.9 

.9 

5.8 
5.3 
4.8 
1 .o 

(:::, 
.8 
.8 

1.5 
1 .I 

.7 

.8 



CASE 

K UL 
LER 
LL 
Width 

L UL 
LER 
LL 
Width 

TABLE 3. 95% CONFIDENCE INTERVALS FOR LER (CONT'D) 

BOOTSTRAP FIELLER'S 
3000 1000 750 500 250 100 THEOREM )__ - - - - I_ 

3.3 3.3 3.3 3.3 3.3 3*2 2.7 2.7 2.7 2.7 2.7 2.7 (Z) 
2.4 2.4 2.4 2.4 2.4 2.4 2.2 

*9 .9 .9 09 l 9 .8 1.1 

3.3 3.3 3.3 3.3 3.3 3.2 
2.8 2.8 2.8 2.8 2.8 2.8 
2.4 2.3 2.4 2.4 2.3 2.5 2.3 

.g 1.0 .9 .g 1.0 .7 1.1 

ERROR 
PROP. 

3.3 
2.7 
2.2 
1 .I 

3.3 
2.8 
2.2 
1 .I 

a 

l 
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CASE 
3000 1000 

BOOTSTRAP 
750 100 

A UL 5.7 5.7 5.7 5.7 5.7 5.7 
LER 5.2 5.2 5.2 5.2 5.2 5*2 
LL 4.8 4.8 4.8 4.8 4.7 4.8 
width 09 09 .9 .9 1 .o .9 

B UL 3.1 3.0 3.1 3.1 3.0 3.1 
LER 2.6 2.6 2.6 2.6 2.6 2.7 
LL 2.3 2.3 2.3 2.3 2.3 2.3 
Width .8 .7 .8 .8 .7 .8 

C UL 4.5 4.6 4.5 4.5 4.6 
LER 4.1 4.1 4.1 4.1 4.2 
LL 3.7 3.7 3 . 7 3.7 3.8 
Width .8 09 .8 .8 .8 

D UL 5.4 5.4 5.5 5.5 5.4 
LER 4.9 4.9 4.9 4.8 4.5 
LL 4.4 4.4 4.4 4.4 4.4 
Width 1.0 1.0 1 .I 1 .I 1 .o 

4.6 
4.1 
3.8 

/  l 8 

5.3 
4.9 
4.4 

.9 

E UL 5.5 5.4 5.4 5.3 5.5 5.5 
LER 4.7 4.7 4.7 4.7 4.7 4.7 
LL 4.1 4.1 ' 4.1 4.1 4.1 4*2 
Width 1.4 1.3 1.3 1.2 1.4 1.3 

F UL 5.4 5.4 5 .,4 5.4 
LER 4.0 4.8 4.8 4.8 
LL 4.3 4.3 4.3 4.3 
Width 1.1 . 1 .I 1.1 1.1 

5.3 

t :; 
1 .o 

5.3 
4.8 
4.3 
1.0 

G UL 3.8 3.8 3.8 4.0 3.8 3.9 
LER 3.3 3.3 3.3 3.3 3.3 3.3 
LL 2.9 2.9 2.9 2.9 2.9 2.9 
Width -9 .9 .9 1.1 .9 1.0 

H UL 7.1 7.1 7.1 7.1 6.9 7.1 
LER 5.6 5.6 5.6 5.6 5.5 5.6 
LL 4.5 4.5 4.5 4.6 4.5 4.5 
Width 2.6 2.6 2.6 2.6 2.4 2.6 

I UL 5.6 5.6 5.6 5.6 5.6 5.6 
LER 5.3 5.3 5.3 5,3 5.3 5.3 
LL 5.1 5.1 5.1 5.1 5.1 5.1 
Width .5 .5 .5 .5 .5 .5 

J UL 
LER 
LL 
width 

1.3 
1 .I 

-9 
.4 

1.2 
1.1 

.9 

.3 

I.3 
1.1 

.9 
.4 

1.2 
1.1 

.9 

.3 
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1.3 
1 .I 

l 9 
.4 

1.3 
1.1 

.9 

.4 

TABLE 4. 90% CONFIDENCE INTERVALS FOR LER 

FIELLER'S ERROR 
THEOREM PROP. 

$:$ 
. 

1.2 

5.7 
5.2 
4.6 
1 .I 

(::A, 
2.2 

.9 

3.1 
2.6 
2.2 

.9 

($:a) 
. 

1.1 

4.7 
4.1 
3.6 
1 .I 

(2:) 
4.3 
1.2 

5.5 
4.8 
4.2 
1.3 

5.6 
4.7 
3.8 
1.8 

(2, 
4.2 
1.3 

5.5 
4.8 
4.1 
1.4 

t% 
2.7 
1.3 

4.0 
3.3 
2.6 
1.4 

(;::, 
4.2 
3.6 

7.2 
5.6 
3.8 
3.4 

G::, 
5.0 

.7 

5.7 
5.3 
4.9 

.a 

(3, 
.8 
.6 

1.4 
1.1 

.8 

.6 



CASE 
3000 1000 

BOOTSTRAP 
750 500 250 - - - 100 

K UL 3.2 7.2 3.2 7.2 5.2 3.2 
LER 2.0 2.8 2.7 2.7 2.7 2.7 
LL 2.4 2.4 2.4 2.4 2.4 2.4 
Width .8 .8 .a .8 .8 .8 

L UL 3.2 3.2 3.2 3.2 3.1 3.2 
LER 2.8 2.8 2.8 2.8 2.8 2.8 
LL 2.4 2.4 2.. 4 2.4 2.4 ,2.4 
Width .8 .8 .8 .8 l 7 .8 

TABLE 4. 90% CONFIDENCE INTERVALS FOR LER (CONT'D) 

FIELLER'S ERROR 
THEOREM PROP. 

(2) 
2.4 

.9 

3.2 
2.7 
2.3 

-9 

3.2 
2.8 
2.3 

.9 

a 
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CASE 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

UL 5*6 5*6 5.6 5.6 5.7 5.6 
LER 5.2 5.2 5.2 5.2 5.2 5.2 
LL 4.8 4.8 4.8 4.8 4.8 4.9 
Width .8 .8 .8 .8 09 .7 

(Z) 
4.7 
1 .o 

5.6 
5.2 
4.7 

.9 

UL 3.0 3.0 3.0 3.0 3.0 3.0 
LER 2.6 2.6 2.6 2.7 2.7 2.6 
LL 2.3 2.3 2.3 2.3 2+3 2.7 
Width 07 .7 07 07 17 .7 

(2:) 
2.3 

.7 

3.0 
2.6 
2.2 

.8 

UL 4.5 4.5 4.5 4.5 4.5 4.5 4. 6 4.6 
LER 4.2 4.2 4.1 4.1 4-2 4.1 (4.0 4.1 
LL 3.8 3.8 3.8 3*8 3ea 3.8 3.7 3.7 
Width l 7 .7 .7 .7 .7 .7 .9 -9 

UL 5.3 5.3 5*3 5.4 5.3 5.3 
LER 4.9 4.9 4.9 4.9 4.9 4.9 
LL 4.4 4.4 4.4 4.4 4.5 4.5 
Width l 9 .9 .9 1 .o .8 .8 

(Z, 
4.4 
1 .o 

5.4 
4.8 
4.3 
1 .I 

UL 5.3 5.3 5.3 5.4 5.3 5.4 
LER 4.7 4.7 4.7 4.7 4.7 4.7 
LL 4e2 4.1 4.1 4.2 4.1 4.2 
Width 1.1 1.2 1.2 1.2 1.2 1.2 

5-4 
4.7 
3.9 
1.5 

UL 5.3 5*3 5.3 5.3 5.2 5.3 
LER 4.8 4.8 4.8 4.8 4.8 4.8 
LL 4.4 4.3 4.4 4.4 4.4 4.3 
Width .9 1 .o 09 -9 .8 1 .o 

(Z) 
4.3 
1 .I 

5.4 
4.8 
4.2 
1.2 

UL 
LER 
LL 
Width 

;:; 
2.9 

.8 

3*7 3*7 3*7 3.7 3.7 
3*3 3*3 3.3 3.3 3.3 
2.9 2.9 2.9 2.9 2.9 

.8 .8 .8 .8 .8 

(El 
2.8 
1.1 

5.8 
3-3 
2.7 
1 .I 

UL 6.7 6.9 6.9 6.6 6.9 
LER 5.6 5.6 5.6 5.6 5.7 
LL 4.7 4.7 4.7 4.6 4.7 
Width 2.0 2.2 2.2 2.0 2.2 

6.6 
5.5 
4.5 
2.1 

::; 
5.1 

.4 

1.2 
1.1 

.9 
.3 

(75% 
4.4 
2.9 

6.9 
5.5 
4.1 
2.8 

UL 
LER 
LL 
Width 

UL 
LER 
LL 
Width 

5.5 
5.3 
5-l 

.4 

1.2 
1.1 

.9 
.3 

5.5 
5.3 
5.1 

.4 

1.2 
1.1 

.9 

.3 

5.6 
5.3 
5.1 

.5 

5*5 
5.3 
5*1 

.4 

1.2 
1.1 
1.0 

.2 

5*5 
5.3 
5.1 

.4 

1.2 
1.1 
1.0 

.2 

(Z, 
5.0 

.6 

5.6 
5.3 
5.0 

.6 

1.2 
1.1 

.9 
-3 

(2) 
.9 
.5 

1 .7 
1 .I 

.9 
.4 

TABLE 5. 

1000 3000 

85% CONFIDENCE INTERVALS FOR LER 

BOOTSTRAP 
750 500 - - 
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100 
FIELLER'S ERROR 
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TABLE 5. 85% CONFIDENCE INTERVALS FOR LER (C~NT'D) 

CASE 
go00 

K UL 3.1 3.1 
LER 2.7 2.7 
LL 2.4 2.4 
Width .7 .7 

BOOTSTRAP 
750 500 - - 

3.1 3.1 
2.7 2.7 
2.4 2.4 

97 .7 

3.1 3.1 
2.7 2.7 
2.4 2.4 

l 7 97 

L UL 3.1 3.1 3.1 3.1 3.1 3.1 
LER 2.8 2.8 2.8 2.8 2.8 2.8 
LL 2.5 2.5 2.5 2.5 2.5 2.5 
Width .6 .6 .6 .6 .6 .6 

1000 100 
FIELLER'S ERROR 

THEOREM PROP. 

(2:) 
2.4 

.7 

2.4 
.8 

3.1 
2.7 
2.3 

.8 

3-2 
2.8 
2.4 

.8 

a 
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Postscript submitted by 
Joseph M. Tessmer 

1947th HQ Support Group 
SAGF 

Directorate for Theater Force Analysis 
Fighter Division 

USAF 
Washington, DC 20330 

Subject: Unusual Data Sets 

The following results were obtained from a force-on-force evaluation. 

- Replication Red Casualties Blue Casualties -ma 

1 l 9687 0 
;  .5086 l 5069 0 

4 .1762 .7:74 
5 0 0 
6 .1405 0 
7 0 0 

Note that the number of Blue casualties is zero six times out of seven and both 
Red and Blue casualties are zero two times out of seven. 
equation (5), Fieller's theorem, 

The application of 
yields 90% confidence limits of -7.41 and .62 . 

The estimate of the LER (equation 2) is 6.93. In this case, the upper and lower 
confidence limits do not include the point estimate of the LER. The results of 
the bootstrap are also seemingly anomalous. The mean LER value is about 1200 
across different replication sizes ranging from 250 through 3000 and the upper 
and lower 90% confidence limits average about 7000 and 2.5, respectively. This 
observation does not negate the use of the bootstrap and Fieller's method, but 
does indicate that some unusual data sets (i.e., containing a preponderance of 
zeros and numbers less than one) should not be analyzed in this fashion. More 
theoretical work needs to be done concerning the make-up of the data before 
subjecting them to analysis. 3f course, this is true for any statistical 
procedure. 
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ACCEPTANCE OF A MEAL AND ITS COMPONENTS - AN EXERCISE IN MISSING DATA 

Edward W. Ross 
Staff Mathematician 

US Army Natick R&D Laboratories 

ABSTRACT 

l 
This paper is a study of the relation between the consumer acceptance 

of the items that make up the meal. The primary purpose is 

of predicting overall meal-acceptance scores from the scores 

of a meal and 

to find a way 

for the indiv 

Ready-to-Eat. 

idual items in the Army field-ration system called the Meal, 

Attempts to do a linear regression encounter difficulties 

because of the large and non-random fraction of missih.g data. This problem 

is treated by a procedure that leads eventually to a single formula for the 

predicted overall meal scores. These predicted meal scores are then 

analyzed by the same methods used for the item scores. Stability results 

for meals are found using data from a storage study of the items after 24 

months. 

t 
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Introduction 

This paper describes the study of the relationship between the food 

items in a meal and the meal considered as a whole, in terms of the 

scores which the item and meal receive In a consumer-acceptance test. 

The purpose is to derive and apply a formula that will permit 

estimation of meal scores from scores of the items in the meal. 

This effort has its origins in a storage study of a military 

ration.system ualled the Meal, Ready-to-Eat (MRE) which is now in 

progress at the U. S. Army Natick R&D Laboratories. In this study 

consumers are asked to evaluate the items in a meal but do not give an 

evaluation of the overall meal. However, when the meal is used in the 

field, it will be judged as a whole. Consequently, it is desirable to 

have a way of estimating the acceptance score for a meal from the 

scores of the items in the meal. Such an algorithm allows one to study 

how meal-acceptance is affected by storage time and temperature. 

Previous work on this question is described in a report by 

Rogozenski and Moskowitz (1$74), which also mentions earlier efforts 

in this direction. Their principal finding was that meal score was 

governed primarily by the entree score; the other meal components 

(starch, vegetable, salad and dessert) had less than one-third as much 

influence as the entree. This accords well with intuition. Their 

procedure was, as ours will be, mainly a statistical regression 

analysis of a large set of data on items and meals. The military 
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meals used in their analysis were typical of those served in a 

garrison setting, i.e. a mess hall, which are much different from 

combat rations like the MRE. The present study differs from theirs 

also in the important role played by the treatment of missing data in 

the analysis. 

Materials and Methods 

ln this section we describe the storage study, then discuss the 

resultlnq data and finally present the procedure for predicting meal 

scores and analyzing them to find their storage-stability. 

Sketch of the Storage Study 

The storage study of the MRE ration is described by Ross et al 

(1983). We give here a brief summary of this investigation. 

The MRE consists of 12 meals or menus, each containig roughly six 

items, not all of which are evaluated in this test. There are 39 

different items in all, a number of which occur in more than one meal. 

Each menu contains an entree plus items of other types, These types 

are as follows: 

type 1 - entrees 

2 - pastries 

3 - vegetables 

4 - fruits 

5- spreads 

6 - beverages 
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79 candies 

8- miscellaneous (catsup,crackers, etc.) 

In the storage study these meals were obtained through the usual 

Defense Department procurement system. Some of the meals were tested 

when received, and the rest stored at temperatures of 4, 21, 30 and 38 

degres C. The meals were withdrawn from storage and served to test 

subjects according to the schedule shown in Table 1. In these tests 

each of 36 consumers evaluates at one sitting all the Items in a meal, 

assigning to each a score on the 9-point hedonic scale- 

9 means “like extremelV 
. 

5 means “neither like nor dislike” 
. 

; means “dislike extremely” 

After a withdrawal the scores for each item at all the preceding and 

current withdrawals are analyzed by a variety of statistical tests to 

estimate their shelf-lives and various other characteristics of their 

storage stability. 

Ordinarily each item is analyzed apart from all others. Indeed, if 

an item is present in more than one meal, it is studied as a separate 

item in each meal where it occurs. However, at the withdrawal 

following 24 months of storage test subjects were asked to furnish 

evaluations of the meals as a whole in addition to, and on the same 

scale as, the items in the meal. We use these data to develop a model 

for predicting the overall meal scores. Thereafter the model is 

applied to data at other withdrawal-times to predict meal scores, and 
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the meal scores for all times and temperatures for which we have data 

are then analyzed by the same routines used for the individual items. 

Data Structure 

The data on which the model is based are item-scores and meal- 

scores, obtained after 24 months of storage at three temperatures, 21, 

30 and 38 deg. C. (Table 1 shows that meals stored at 4 deg C. were 

not tested at the 24-month withdrawal). For each menu at each of the 

three storage temperatures the data were placed in an array of 36 rows 

and 9 columns, a row containing the scores given by a test-subject, 

and the column designating the food type, 1 through 8. Column 9 

contains the meal scores. Each meal includes items of certain types 

and not of others. The symbol 0 (zero) is,used as a missing-data 

indicator and appears in columns for food-types absent from a meal. 

The description of the data is furthered by Tables 2 and 3. Table 

2 lists each of the 52 items by name and gives its item-index, the 

index of the menu in which it occurs and the food-type. Table 3 is an 

array showing for each menu the food-types present and the indices of 

the items. E.g. we see that Menu 10 includes items of Type 1 (Item 

lO,meatballs), Type 2 (Item 22, chocolate nut cake), Type 3 (Item 28, 

potato patty) and Type 8 (Item 52, crackers and jelly), but no items 

of Types 4, 5, 6 nor 7. Table 2 makes clear that several foods 

(brownies, cookies, etc) occur as different items in different menus. 

Table 3 shows that entrees occur in every menu, but the other types do 

not. 
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We shall see in the next sub-section that the estimation and 

prediction is based (at least initially) on the following Model of 

linear regression: 

j=8 
X =suM(X B)+e i=1,2,..30 (1) 

19 j= 1. ij 3 f. 

Here X is the score given for the item of type j by the i-th 
iii 

reseondent , and j = 9 denotes the meal score. The R’s are the 

regression-coefficients to be estimated, the e’s are assumed to be 

independent, Gaussian random variables with 

mean(e) = 0 (2, 

stddev(e) = S (3) 

and S is also to be estimated. We are, therefore, attempting to fit 

the vector of meal-scores by a linear combination of vectors of 

type-scores. Any line of data which lacks one or more type-scores is 

incomplete and will be classified as missing data by most of the 

common computer algorithms for treating data. We see from Table 3 that 

every menu, and hence every line of data,has some missing types, and 

so our entire data-set will be classified as missing! This suggests 

that our way of handling missing-data will have an important effect on 

the results of the regression. 

If we examine this data-set, we are struck by the inherent nature 

of the missing data as well as its prevalence. Ordinarily, when data 

are missing in an experiment, it is accidental and occurs in 

relatively few cases. In the present context, it is by no means 
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accidental; on the contrary, it results from the desire to introduce 

variety into the meals and is completely intentional. Also, roughly 

45% of the data-cells are missing, see Table 3, hardly a small 

fraction of the total data. 

Either of these circumstances ia sufficient to rule out 

successful application of the usual procedure for handling missing 

data, the EM-algorithm, see Dempster et al (1977) and Laird and Louis 

(1982). Some other approach is needed in such problems of structural 

missing data. 

Moreover, the situation is in fact somewhat worse than so far 

depicted for several r-uasons. First, the data at 24 months were 

censored in the following way. The test-monitors decided that the 

following items were unfit for consumption by the test-subjects: 

Strawberries, Items 31 and 32 at 38 degree storage 

Brownies, Items 13 and 14, at 21, 30, and 38 degrees 

Data for these cases also appear as missing in the data array. 

Second, the test monitors forgot to ask for overall meal scores for 

Menus 1 and 2 at 24 months from 21 and 30 degree stbrage although 

scores were obtained for the individual items in those meals. Finally, 

there was one instance of more-or-less ordinary missing data, i.e. In 

Menu 7 for 30 storage only 35 lines of data were taken. 

Thus we have missing data for a variety of causes. The situation 

is depicted in the missing-data map, Table 4, which shows for each 

menu and storage temperature whether the various food-types have 
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4 

missing data, and, if so, the reason. In this,chart blank entries 

imply that we have data, the symbol S dehotes structural or inherent 

missing data, C indicates censored data, F the forgotten cases and 

numerical entries specify the number of missing scores due to 

unexplained or random mishaps. The number of missing scores is 36 

(i.e. all scores) in the cases marked by letter symbols. To 

reiterate, the extent and complexity of the missing data have a major 

effect on the estimation and prediction procedures that we use. 

Estimation and Prediction 

The fact that the data consist of discrete scores suggests that we 

could do either a regression analysis or one based on some form of 

contingency tables. We choose the former because its methods are more 

completely available in computer software but remain cautious about 

the applicabflity of its underlying assumptions. 

If missing data were not a problem, we would do a stepwise,re- 

gression, bringing in one food-type at a time and ceasing when 

additional food-types caused no improvement in the fit. If we 

attempted this in the present situation, we would find that bringing 

in a new type would perhaps improve the fit but would usually also 

reduce the number of data cases on which the estimates are based. 

Eventually, bringing in a new food type would have no effect because 

all the-data would be classified as missing. For example, any 

regression involving both Type’3 (vegetables) and Type 4 fruit) would 

have missing data in every line, see Table 3. 
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In deciding how to proceed, we list the characteristics that we 

would like the final method to have, keeping in mind that we intend to 

use the results for predicting meal scores where none have been 

measured, 

1. The fit should be good. 

2. The fit should be based on as large a data-set as possible. 

3. The fit should be free of peculiarities caused by correlated 

columns (near rank-deficiency) or excessively influential data points. 

4. The resulting predictor should use only item scores that are 

available. 

5. The predictor should be as simple as possible. 

Clearly these desires conflfct, and we must seek a compromise among 

them. Many different procedures are possible, some which produce an 

excellent fit for a small data-set, others a poorer fit applicable to 

a large data-set etc. 

We describe now the procedure that was finally used, It is based 

on (a> pooling food-types and (b) estimating missing data from entree 

scores. To be precise we introduce a vector, Y, of transformed scores 

as follows: 

Y = x j=1,2 
fj U 

Y :x +x , Y =x +x (4) 
13 13 14 14 i5 i8 

Y =x ,Y =x 
15 16 i6 i7 
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In these formulas we explicitly use the missing-data symbol, i.e. the 

X value is taken as 0 if the data is missing. This t,ansformation 

amounts to pooling types 3 and 4 (vegetables and fruits) into a new 

type, 3, and similarly pooling Types 5 and 8 (spreads and misc- 

ellaneous) into another new type, 4, and re-indexing Types S and 6 to 

avoid confusion. The reasons for these choices are visible in Table 3. 

Types 3 and 4 are almost perfectly complementary in the sense that one 

has data where the other lacks it, and there are no cases where both 

have data. Likewise for Types 5 and 8. Types 6 and 7 lack these 

desirable properties. Moreover the pooling of scores for fruits and 

vegetables makes some sense from a food-technological viewpoint since 

both are plant products. The pooling of spreads and miscellaneous 

types lacks as clear a justification, but we argue that the original 

classification of these types is somewhat arbitrary, and the present 

pooling is no more so. 

The poo!_ing creates a new set of types which show much less 

missing data than the original classification. The Y-variables 

numbered 2, 3 and 4 are each missing from only one menu, respectively 

6, 9 and 12. We estimate the missing scores for each of these cases by 

regressing the variable on the ubiquitous variable for entrees, number 

1, over the 11 meals where data are present. Then that relation is 

used to predict the scores for the lone missing case. We find 
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Y = 5.65 + 0.172~ (r = 0.21) (5) 
2 1 

Y = 4.77 + 0.282Y (r = 0.33) (6) 
3 1 

Y = 4.17 + O.326Y (r = 0.34) (7) 
4 1 

In all cases the t-values for the coefficients exceed 6. 

With these procedures we obtain a set of data for Y-variables 

number 1,2,3,4 and 9 that is complete except for the one randomly 

missing data-point of meal 7 and the forgotten sets of meals 1 and 2. 

That is, we have filled in the censored and structurally missing data. 

This rather large data-set (1151 values) is used as the basis for 

a linear regression with model 

4 
X = R + SUM ( Y B ) + @ . 

io 0 j=l fj j i 

The resulting estimates and their t-values are 

B = -0.684 T q -4.25 
0 0 

B q 0.398 T = 26.8 
1 1 

R = 0.217 T = 10.4 
2 2 

B q 0.257 T = 14.9 
3 3 

B = 0.234 T = 13.7 
ii 4 

(8) 

(9) 

The regression has r = .838, S = 0.920, and the residuals are 
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distributed in reasonably Gaussian fashion. The Y-variables 5 and 6 do 

not make a major improvement to the fit. 

The purpose in deriving these estimates is to generate predicted 

menu scores which can then be subjected to the same storage-stability 

calculations as the individual items; These algorithms require integer 

values as input, so the predicted scores obtained from the regression 

must be rounded to whole numbers. When this is done, and the predicted 
1 

integers compared with the meal-scores of the data, we find that their 

differences are distributed as follows: 

Difference 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

Number of Values 

3 

7 

41 

208 

621 

226 

40 

6 

The predictor obtained from the regreqsion and missing-data 

procedure can be written 
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X = -0,684 +.398Y + 0.217{U Y + (1-U I(5.65 + 0.172Y 11 
9 1 22 2 1 

+0.257tU Y + (1-U J(4.77 + 0.282Y 11 
3 3 3 1 

+0.234!U Y + (t-U J(4.17 + 0.326Y 1) (10) 
4 4 4 1 

where U = 0 if Y, z 0 (i.e. data for Y. is missing) 
j 3 3 

U = 1 if Y > 0 (i.e. data for Y is present) 
j .I j 

and X is rounded to the nearest integer after the calculation. 
9 

This predictor is used on the data through 24 months from the MRE to 

create for each item and temperature a set of predicted scores in 

exactly the same form as for an item. These data are then run through 

the calculations that produce estimates of storage stability at the 

various temperatures. 

In predicting meal scores for the cases where censored data occur 

(item3 at various temperatures in menus 2, 3, 8 and 12) there is an 

element of uncertainty in the above procedure. The predictor (10) was 

derived by omitting these items, i.e. regarding them as missing data. 

To be perfectly consistent, prediction should be done in the same way. 

However, we do in fact know that the test-monitors thought that the 

items-were too bad to be served, which implies that the scores would 

have been very low had the items been tested. Accordingly, the scores 

for these items were set to 1, the lowest possible score, pridr to 

using (10). to estimate the scores of the menus in which they occur. 
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Results and Discussion 

Table 5 shows estimates of shelf-lives for each menu when stored 

at the four test-temperatures, based on the meal data through 24 

months generated by the procedure described in the preceding section. 

The shelf-lives in Table 5 are the shortest of three found by doing, 

respectively, linear and non-linear regressions and a multinomial 

logit fit for the time-dependence of the data. The procedures are 

described by Ross et al (1983). Since these are based on data only 

through 24 months, large estimates of shelf-life are likely to be 

erratic; consequently, we do not enter shelf-lives predicted to be 

longer than 48 months in this table. We see that all the meals had 

shelf lives exceeding 48 months at 4 degrees, as did most of the meals 

at 21 and 30. At 38 degrees half the meals had lives less than 36 

months, the shortest being 19 months for Meal 2. The most stable 

menu8 appear to be l,5,6,7 and 10 though 4 and 9 are also quite good. 

Another way of looking at storage-stability is by mean8 of the 

average scores after some fixed storage time, say 24 months. These are 

listed in Table 6. In a coarse way we expect that menus with short 

shelf-lives will have low scores, and this effect can be seen by 

comparing Tables 5 and 6. 

In general the least stable menus appear to be 3 and 8. Much of 

their instability seems to be caused by imputing scores of 1 to the 

censored data for brownies, Items 13 and 14, which are part of these 

meals. For, when we repeat the prediction with brownies excluded, i.e. 
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treated as missing data, we find that these meals show little or no 

change over time at any of the temperatures. A similar effect Is found 

for strawberries, Items 31 and 32, in Menus 2 and 12 at 38 degrees 

although the effect is weaker in Menu 2 than for the others, 

It appears then, that there can be a sizeable difference in the 

time-behavior of menu-scores resulting from the two ways of treating 

the censored data for an individual item in a menu. In both 

procedures the censored data for the item is regarded as missing when 

the regression (8) is done, i.e. artificial scores for the missing 

item-type are calculated , using Equations (5) or (6),- as appropriate. 

The difference arises In the prediction stage where Equation (10) is 

used to generate a menu-score from the item-scores. If the scores for 

an item are thought to be missing, then U = 0, and the artificial 

score for the item is used. If we think that the item scores are 1, 

then we are taking them as known, U = 1, and the l's rather than the 

artificial scores are used. 

It is not surprising that these procedures lead to different 

outcomes, and it is also possible to suggest further methods that will 

give still other results. For example, perhaps assigning all l’s is 

too extreme. Some different distribution of low scores might be more 

plausible and lead to less abruptly different results. What is lacking 

is a rationale for choosing the most plausible distribution. It is 

clear, however, that the censored data are not randomly missing. We 

know something though not everything about what these scores would 

have been had the items been served. 
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It is also possible to imagine a large number of alternative 

procedures for handling structural missing data, For example, we could 

simply do a separate regression for each menu. In that case there Is 

no missing data, but we have 12 different regressions, each based on 

only’&08 scores. Across all menus this leads to a aliqhtly better fit 

than the procedure in Materials and Methods, Out of 1151 scores there 

were 85, as opposed to 97, with absolute differences exceeding 1, an 

improvement that is not significant at the 905 confidence level 

according to the chi-square test. The procedure in Materials and 

Methods 10 at the opposite extreme from the one just given, for we 

have only a single regression but have had to deal extensively with 

missing data. 

It is also worth inquiring whether the regression results, (91, 

have been adversely affected .by correlations among the variables. 

There are significantly non-zero correlations among the Y-variables, 

for we used them in obtaining the results (5) to (7). However, the 

relations depicted there seem too weak to cause much difficulty with 

the solution of the normal regression equations. This is confirmed by 

an eigenvalue analysis of the correlation matrix, which shows no 

indication of ill-conditioning. 

The results shown in Table 5 are not strictly comparable with 

those found earlier for the MRE by Ross et al (1981) and Ross (1983a). 

However; in general we might expect the meal results to resemble those 

for all items pooled in the earlier papers, and they do. For example, 

in (1983) all items pooled were’found to have a shelf-life of 42 
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months at 38 degrees. Again, in (1983a) a time-temperature model led 

to an estimated shelf-life for all items of 44 months. The median of 

the shelf lives for the 12 meals at 38 in Table 5 is 36.5 months. Both 

the previous efforts suffer from large enough standard errors so the 

present results are not inconsistent.with them. 

To conclude, the procedure in Materials and Methods appears to be 

a plausible one for dealing with problems suffering from large amounts 

of structural or censored missing data, It is reasonably simple to use 

and gives results that seem to be sensible. Tentatively, we adopt it 

for current use and expect to test it against measured data at some 

future withdrawal. 
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TABLE 2 

LIST OF FOOD-fTEflS, THEIR INDICES,PlEHUS hND TYPES 

ITEf’l: DESCRIPTIbN 
I~-~-I~~II-I*-- 
PORK SAUSAGE PWTY 
HAfl CHICKEN LOAF 
BEEF PfiT’fY 
BEEF WITH BBG-SCtUCE 
BEEF STEW 
FRANKFURTERS 
TURKEY WITH GRCtUY 
BEEf ldITH GRAVY 
CHICKEN A LCI KING 
f’lEfiTBFlLLS 
HFIMSLICES 
BEEF 8 SPICE SAUCE 
BROWNIES 
BROWIES 
COOKIES 
COOKIES 
COOKIES 
PINEAPPLE NUT CCIKE 
CHERRY NUT CAKE 
RAPLE NUT CFlKE 
FRUIT CAKE 
CHOCOLATE NUT CFlKE 
ORANGE NUT CClKE 
BEANS & TOPlATO SAUCE 
BEANS h TORCITO SAUCE 
BEANS 6 TOMATO SAUCE 
POTATO PATTY 
POTATO PATTY 
PEACHES 
PEACHES 

ITEM4 DESCRIPTION 
m**eIIawwI-I--H- 
STRWBERR,IES 
STRAWBERRIES 
APPLE SAUCE 
FRUIT RIX 
CHEESE SPREAD 
PEANUT BUTTER 

%I:~ 
COCOR 
COCOA 
COFFEE 
CHOCOLATE TOFFEE 
CHOCOLATE FUDGE 
UANILLIS CREl7E 
CATSUP 
CATSUP 
CRACKERS 
CRACKERS 
CRACKERS & PNT BTR 
CRACKERS Q CHEESE 
CRilCKERS 8 CHEESE 
CRACKERS b JELLY 



ITEmS AND TYPES PRESENT IN WRJOUS NEALS, IF RN 
ITEM OF A CERTAIN TYPE IS PRESENT IN A RENU, ITS 
ITEM-INDEX OCCUPIES THE CORRESPONDING CELL IN THE TClBLE 

MENU NO.// TYPE N0.t 1 2, 3 4 5 6 7 8 
ww111111 II I- Ia WI II I- -I -I 

: 2 1 18 is s: 38 45 47 
3 3 13 24 3s 
; 4 5 16 19 29 34 36 42 

6 6 2s 43 tx 
x 7 8 20 14 27 26 37 39 

9 9 21 40 E! 

10 10 22 28 
:: 12 11 23 17 39 32 

:; 
41 44 



TABLE 4 

fliSSINS DQTR FM?. cl SYiWOL IN 
Tb’(C)T WTe IS FIISSIMC FRO3 THnT 
TEXT FOR EXPLtWaTIOM OF CODE 

sss s sss s 
SW 

z %: sss 
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TABLE 5 

PREDICTED.SHELF-LIVES IN MONTHS OF THE 
TWELVE MEALS AT FOUR TEMPERATURES. A - 
flEANS THAT THE SHELF-LIFE EXCEEDS 48 MONTHS. 

4 
mtt 

I  

30 
X%X% 

I  

I  

26 

21 

35 
- 

38 
NW 

1S 
25 
39 



TABLE 6 

AVERAGE SCORES OF THE TWELVE MEALS AFTER 
TWENTY-FOUR MONTH STORAGE AT FOUR TEMPERATURES. 
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NUMERICAL VALIDATION OF TUKEY'S CRITERION FOR CLINICAL 
TRIALS AND SEQUENTIAL TESTING 

Charles R. Leake 
USA Co~;Tp~s Analysis Agency 

: CSCA-RQR 
8120 Woodmont Avenue 

Bethesda, Maryland 20814 

Abstract. A basic problem in conducting either clinical or sequential 
trials is to determine which or when statistical significance for a 

B predetermined level of a has occurred. The criterion of 

a7= a/k 

for k nonoverlapping comparisons is mentioned in a paper by Tukey (1). The 
consequences of not using this criterion are developed. The use of this 
criterion might be too stringent, however, and an alternative statistic is 

-given. 

Introduction. Tukey (1) presented a paper at the Birnbaum Memorial Sympo- 
sium in May 1977. This paper was later published in Science. In this 
paper, Tukey mentions a criterion to determine whether or not one can say 
that he has observed statistical significance other than some random noise 
when making a number of comparisons on a set of data. This criterion, with 
all apologies to Professor Tukey, has been bestowed with the name Tukey's 
Criterion through common usage in a number of circles in the military 
analytical community. 

The criterion is, for a given level of significance say a where k is 
the total number of plausible comparisons,a, = a/k. Thus, if one observes 
a difference which has a probability of occurring of a7 or less when one is 
comparing k nonoverlapping classes (or subsets) of a sample space, then one 
can say that this difference is statistically significant at the a level. 

B The converse shows why this is necessary. Table 1 gives a sample of 
the probability of not reaching statistical significance at a = .05 (5%) 
and aaT = .05/k for a selected number of comparisons, as well as the prob- 
ability of observing at least one statistical significance for a = .05. 
Clearly for a fixed a level, the greater the number of comparisons which 
one makes, the more obvious it becomes that one will observe at least one 
statistical significance. Thus, the practice of conducting a test, making 
pair-wise comparisons, and reporting the significances for a fixed level 
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of a shows a certain statistical naivety. When done deliberately, it 
raises an obvious ethical question. To quote Tukey on this subject, 

"The moral seems to me to be abundantly clear: Knowing 
that, for one class of patient, a clinical inquiry has 
reached some specific level of significance, such as 
4%, is not evidence of the same strength as knowing that 
a focused clinical trial, involving a prechosen question, 
has reached exactly that level of significance, even if 
both the inquiry and the trial involved the same number 
of patients exposed to risk, and the same total number of 
end points, distributed in the same way." (1, p. 681) 

Table 1. Sample of Probabilities of Not Reaching Significance 

I 

Sample number of 
comparisons 

Probability of not 
reaching significance 

At 5% At 5%/k 

Probability of at least 
one significance at 5% 

: 
3 
4 
5 

:i 

20” 

95.0 
90.2 
85.7 
81.5 
77.4 
60.0 
35.8 

95.0 
95.1 
95.1 
95;1 
95.1 
95.1 
95.1 
95.1 
95.1 

5.0 

149:: 
18.5 
22.6 
40.0 
64.2 
92.3 
99.4 

What then can one do, when one is conducting an inquiry on a set of 
data that might not even have been created by the inquirer? There is one 
obvious answer to this question, use Tukey's Criterion to determine which 
comparisons are statistically significant. 

In order to use Tukey's Criterion, one must first divide a by the num- 4 
ber of comparisons to be made. Let's assume for illustrative purposes that 
a = .05 and k, the number of comparisons is 20. It follows, then, that the 
u-level, adjusted for Tukey's Criterion becomes a7 = a/k = .05/20 = .0025. 

Thus, the probability of rejecting HO is not .05 but .0025 when u is ad- 

justed in accordance with Tukey's Criterion. The effect of this change in 
u-level is reflected by a corresponding change in the rejection region of 
the statistic being used. For example, if a Z-score is being used, for a = 
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.05, the critical Z is 1.64. On the other hand, if a7= .0025, as Tukey's 
Criterion specifies, then the critical Z is 2.81. Thus, the observed dif- 
ference must be over l.lagreater than would be required if the a were not 
adjusted for Tukey's Criterion. As a result, the data may not be compat- 
ible with such a requirement for statistical significance. Another would 
be to use another statistic such as Scheffe comparisons in conjunction with 
an analysis of variance. However, in order to use analysis of variance, 
there are certain data requirements such as equal or proportional cell size 
in a two or more way analysis of variance. That available data does not 
always lend itself to such an analysis goes without saying. 

It appears more likely that choosing either of these alternatives is 
unsatisfactory to the inquirer. Either Tukey's Criterion is too stringent, 
or one does not have the required prerequisities for an analysis of 
variance or a similar nonparametric substitute. What then? 

Alternative Statistic. An examination of the problem raised by Tukey leads 
to an alternative approach to attempt to attach meaning to making compari- 
sons on a set of data. Consider the following problem: 

How many observed statistical significances made on k, nonoverlapping, 
and statistically independent comparisons must be made in order to say that 
the number observed has less than a 5% probability of occurring? 

The answer to this question can be found by using the binomial distri- 
bution and solving for x, where 

b(x:N,l-a) < .05. 

As shown in this inequality, x is the desired number of statistical signi- 
ficances, N the number of comparisons, and a, the significance level. 

If this number of statistical significances is achieved, one could 
imply that factors other than chance were involved in obtaining that number 
of statistical significances. Moreover, this statistic could be used for 
parametric and nonparametric comparisons as well as a substitute method for 
an analysis of variance where such an analysis was unfeasible due to sample 
considerations. 

Table 2, which was obtained by using the binomial theorem for n 5100, 
is shown below for a = .05. For n >lOO, a normal approximation of the 
binomial theorem can be used. The number of observed significances were 
obtained from a binomial table (2). This table, or the one below, 'can be 
used for N I 100 to determine whether or not the number of observed statis- 
tical significances occurred by chance alone. 
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Table 2. Number of Observed Statistical Significances for a = .05 for N 
Comparisons to Occur with Less than 5% Probability 

N, number of comparisons Observed significances 

1 
2-7 
8-17 

18-28 
29-40 
41-53 
54-66 
67-79 
80-96 
97-100 
n 100 
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ABSI'RACT 

The Army Is fielding a new digital communications system, the TACFIRE system, 
shown for the brigade-area in Figure 1. In order to investigate the command, control, and 
communications issues associated with the new devices, the Artillery Control Environment 
(ACE) was developed. ACE is a real-time, multiplayer, interactive simulation system run on 
a commercial computer that interfaces with the tactical equipment through a bit box 
(modem). This paper discusses the preparations, experimental design, data collection, 
analysis methods, and results for the first experiment with military players interfad with the 
Artillery Control Environment software conducted 8 hazy - 10 June 83. 
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T. TN’IRODUCI’TON 

A. &&round 

Tn May 1982, the HELEWT (Human Engineering Laboratory Battalion Artillery Test) 
Executive Committee agreed that the Ballistic Research Laboratory Artillery Control 
Environment (ACE) and HELBAT activities should be combined to develop a Command 
Post Exercise Research Facility (CPXRF). The CPXRF will primarily be used for research, 
development, testing and evaluation (RDT&E) work In automatic data processing (ADP) fire 
support control systems using commercial ADP technology-, a secondary uSage is the training 
of the tactical ADP operators under controlled conditions. Further, an ACE/CPXRF 
Subcommittee was formed to provide joint DARCOM-TRADOC guidance in the 
development of ACE technology and use of the CPXRF. The ACE software is a key t& in 
the CPXTW. The software features the ability to automati&.ly load live players with messages 
produced by target acquisition and fire direction simulators while recording all the message 
traf5c that flows between the live and simulated players. 

An overview of the CPX Research Facility and ACE program is given in the 1982 Sept- 
Ott issue of the Field Artillery Journal in an article “HELBAT/ACE Fire Support Control 
Research Facility” by Mr. Barry Reichard. The layout of the facility is shown in Figure 2. 

B. Pumose 

The experiment detailed in this report was the first test in which military players were 
interfaced with the Artillery Control Environment (ACE) software. The purpose of this 
experiment was to demonstrate the feasibility of using the automated techniques of the CPX 
Research Facility for tire support control experiments. 

To demonstrate this capability, a study of the effects of message intensity and 
communiwtion degradation on the Fire Support Team Headquarters’ (FIST HQ) ability to 
perform fire support coordination was performed. Message intensity was defined to be a 

b function of message type, message rate, and meswe content. 

TT. TEST CONCEPT 

A. Objectives 

1) To determine the effect of message intensity on the FIST HQ’s ability to perform fire 
support coordination. 

2) To determine the efkt of communication degradation on the FTST HQ’s ability to 
perform fire support coordination. 
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3) To determine F message intensity and degraded communication have a combined 
effect on fire support coordination. 

B. Measures of Performance 

A measure of performance (MOP) is a response that is used to quantify the effects of 
the factors to be evaluated. Because all of our objectives investigated the effect on fire 
support coordination, the meaSures of performance were the same for all three objectives. 
The following measures of performance were computed on each two hour cell of the test: 

1) Number of messages serviced by the FIST HQs (i.e. messages for which a response 
was generated). This number provides information on the message trafEc at the FIST HQs 
under the dEerent conditions and an be translated into net usage. 

2) Service time distribution, where service time is defined to be the time required for 
the FIST HQ to service a message starting from the time the ACK is sent from the LlS’T 
DMD acknowledging receipt of a message to the time the response message is first 
transmitted. This measure indicates the combined time a message spends in the FTST DMD 
message queue and the processing and decision time of the FIST HQs. 

3) Manual transmission time distribution, where manual transmission time is defined to 
be the time from first transmission of the response message by the operator to the time an 
acknowledgement (ACK) is received for that message. The FTST HQs have completed the 
decision making at this point, but must continue to ‘send the m-e until an 
acknowledgement is received. In degraded communications this time may not be 
inc-onsequentlal. Also, the FIST HQs cannot process other messages while transmitting 
manually. 

4) Frequency count by number of tries for meSSages acknowledged. The FIST DMD 
has a one character field for try number that cycles module 4 (i.e. 0 1 2 3 0 1 2 3 0 ) 9 1 , 9 , 9 9 9 ,*a- . Tt 
was noticed in HELBAT 8 data, that more than four tries were sometimes necessary to get an 
acknowledgement back on a message. TACFIRE uses the try number in the l%T DMD 
message to determine what authenticator to select for comparison to the DMD message.. 
Therefore, if the number of tries exmds four the FIST DMD displays a message to the 
operator to contact destination by voic:: to resynchronize the authenticator codes. This 
voicsdigital mntention then causes more problems to a net that is already experiencing 
communimtions problems. 

5) Number of fire missions ccmpleted/number of lire missions initiated. Tilt FIST 
&I@ ‘serf: given two hours and ten minutes to complete two hours of scenario. A’ampleted 
fire mission, by definition, is a call for fire (FR GRID), a message-tosbserver (IdTO), at 
least one SHOT and an end-of-mission (EOM). 
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4) Number of fire missions completed/number of fire missions expected. The number 
of fire missions expected is the number cf fire missions in the database. This was to measure 
if the FIST HQs could complete all fire missions in the two hour scenario database within the 
two hours and ten minutes allotted. 

c. ScoDe 
The fire support team was a four-man team consisting of: 

1) the fire support team chief 

2) the fire support sergeant 

3) two radio telephone operator/drivers. 

The FIST chief WZLS available to the FIST HQ for initial supervision only. As per typical 
operating procedures, the FIST chief may be absent for extended periods of time 
(hypothetically accompanying the company commander), 

The l3ST HQ was task-loaded by software interactively simulating three platoon-level 
forward observers. The software FOSCE (Forward Observer SCEnarb) used tact&l 
scenarios developed by Mr. Arthur Long of the US Army Field Artillery Board. This scenario 
or input database is detailed in the Section 117-D, “tnput Data Base”. 

The FIST HQ had direct access to fire support from a company-level mortar platoon fire 
direction center CFDC) and a generic field artillery fire direction center. AJl FDC operations 
were simulated interactively by softl+are. The FIST HQ determined the proper action (based 
on the FIST chiefs guidance and training) for each fire request; either to deny the request, 
service the request with mortars or forward the request. Fire support was unlimited, that is, 
not unstrained by ammunition resupply, 

Au members of the FIST Headquarters were trained in the operation of the FIST DMD 
to give the FIST chief flexibility in managing his team. 

D, Limitations 

1) AU observers were placed in the review mode in the FTST DMD subscriber table. 

2) After deciding a fire request should be handled either by the mortars or forwarded to 
the FIX, the fire mission was forwarded in the automatic mission mode. That is, all 
subsequent messages for that fire mission are automatically routed through the FIST DMD. 
Operator intervention is needed only if a message does not get acknowiedged in four tries. 
He is then notfled that a message did not get ACKed after four tries, the message is placed 
in his message queue and must beforwarded manually. 
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3) No FTST HQ initiated missions were included. 

4) No tactid chores were performed, e.g., guard duty, close station march order, 
emplacement, etc. 

5) All communimtion was digit& no voice communication. 

E. Test ConfiRuration 

Figure 3 shows the nodes that were played in the first military player test. The FIST HQ 
equipped with the FTST DMD in the mockup vehicle interacting through EYTHER, the 
intracomputer communications network, with three forward observer scenario programs, the 
mortar firedirection simulator and battalion firedirection simulator. Figure 4 shows how 

D 
these players communicated together and the net assignments, 

TTT. RESOURCE REQUTR-S 

A, Software 

ACE software permits real-time fire support ammand and control functions to be 
exercised in a controlled laboratory environment. The software is written in the C 
programming language and is designed to run under the 4.lbsd (Berkeley) UNTX operating 
system. The major components of the ACE software are described below. 

1. ETHER ETHER is a single program which functions as an intra-computer 
communications network. Computer ports are assigned to communication nets. ETHER 
mpts a message from a port and transmits it to all other ports on the assigned net. Message 
collisions are prevented by separately buffering each message within ElYHER. 

Each net is assigned a probability of message loss which ranges from zero to one. If the 
probability of message loss is zero, the net was an ideal net and all messages are sent to each 
port on the net. Tf the probability of message loss is greater than zero, a uniform random 

b 
number generator is used to decide whether or not a message is lost. Lost messages are not 
transmitted to any port on the net. Acknowledgements are treated the same as any other 
message. 

EZ’HER maintains a log file of each message which it receives. In addition to the raw 
messasa, the log contains the times (Julian day, hour, minute, second) for the start of the 
message, the end of the preamb!e and the end of the message. 

2. A= Disulay (ADTS), ADTS utilizes a CRT (cathode ray tube) terminal to display in 
real time the messages being transmitted through EITHER. The terminal screen is divided 
into eight columns which are labeled for the players (see Figure 5). Each message is 
displayed as two lines in both the sender’s and receiver’s columns. The message first appears 
in the sender’s column. The first line contains the message type and target numbr if it has 
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Fa i IFO 2iFO 3iFIST FlFljS V I MFDS 61 a I 
------------------------------------------------------------------------------- 

FH GRID 1 I IFR GRID 1 I I I 
*A ili:lPl I I*1 10:2il I I I 

I I I I I I 1 
I I IFR GRID I IFR Gf?IIh I I 
1 1 I*^ li:Otsl I*F ii:081 1 
i 1 I ! I I I 
I 1 IMO AF33r)Ol I MCI AF3300 I I 
1 I I*6 ii:431 I hi” ii:411 1 
I I I I 1 I I 

MSG LOST I I IMO AF33001 I I 1 
F 1 I I ,’ -li:+t I I .I 

I I I I I I I 
MCI AF37Of.I I I I MO AF3700 I I I I 
*f ii:541 I I** ii:521 I I 1 

I I I I I I 1 
------------------------------------------------------------------------------- 

www+u~~tr q 1. u***i 
transmitter -> receiver : F -) I 
message type MTO 
target number AF37cIO 
transmit /107: OCl:ii:S2\ rnd prearrh le ‘107: rj[l: ii : 53’>. end msg’ /107: 00: 21 :53’\ 

lTbS9 : lOkADFS1@~03700 30 1 10401008111 00R400100 

FIGURE 5. Sample ACE Display (ADIS) 



been assigned. The second character in the second line is a In”, indicting “sender” and the 
time sent is given. The message will then appear in the “receiver’s” column. The Erst line is 
the sane as in the “sender’s” , the second character in the second line gives the address of 
the “sender” and the time received is displayed. When the acknowledgement is sent by the 
“receiver” an “*” is displayed as the Erst character in the semnd line of the “receiver” and 
when the acknowiedgement is received by the “sender” an “LII is displayed as the Erst character 
in the second line of the “sender”. If the message is degraded by ETHER “MSG LOSJ? 
appears in the receiver’s column. Below the columns, the last message sent is interpreted. 
At the bottom of the screen, the time from the start of that run is displayed. 

3. Forward Observer Scenario (FOSCE). Forward observer scenario program reads a 
database of forward observer CFO) messages and transmits the messages as if they were being 
generated by a real FO. Each message is time-tagged in the database and sent by FOSCE at 
the appropriate time. FOSCE will retransmit a message up to four times if an 
acknowledgement is not received. FOX’& after sending a request for Ere, will wait for a 
message-to-observer IMTO) and SHOT message before transmitting subsequent adjust (SA) 
messages. Because no voice communication was allowed, FOSCE was made smart enough to 
respond to freetext messages asking for the status of a particular Ere mission by target 
number or the status of FOSa itself, that is, active or not active. 

4. Fire Direction Simulator (FlX). The fire direction simulator consists of four 
programs which perform a limited number of TACFIRE/BCS functions. FIX ao~pts fire 
request messages, prioritizes them, assigns target numbers and generates MT0 and SHOT 
messages. The number of simultaneous missions wtGch the FIX will process may be 
specified. Tf the number of missions exceeds the maximum, the FIX will process missions 
based on mission priority. During this experiment, the FIX could handle up to 10 missions 
simultaneously, which was not a limitation on the system. The F’DS could be queried by the 
FIST HQs as to the status of 3 particular fire mission by target number or by observer 
identifi&on number and mission buffer. 

5. Marts Fire Direction Simulator (MFIX). The mortar FDS simulates 
communicsltion with the 81 mm company mortars. Tt is a special version of the FDS program 
which will only accept one fire mission at a time. 

6. Bit EFx Program (BBP). The bit box Interface program accepts messages from 
ETHER and transmits them to a computer port which is mnnected to a bit box. The program 
also reads messages from the computer port and trattstnits them to ETHER. 

13. Hardware 

1. Two Bit Foxes. Bit boxes are microprocessor based modems which enable 
TAmRE hardware to communicate with commercial computers. Bit boxes accept TACFTRE 
messages from wire line or radio, perform error correction and convert the messages to 
RS232 ASCII c!laracters which commercial computers can accept. They will also accept a 
message from the computer, add thp_ error correction bits, time disperse the message and 
trar,smit it over wire line or radio in TACFIRE format @SK). 
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2. FIST DMD. The FKI’ digital message device that was used in the experiment is 
one of four experimental design models (EDM #2) that are in existence. It is a prototype 
model, and not a production model. 

3. VAX 11/750 Commuter. The VAX 11/750 computer was dedicated to running the 
experiment and had no other processes running during the test. The operating system was 
the 4,lbsd (Berkley) UNIX. 

C. Training 

Test participants were collectively trained at the Human Engineering Laboratom in the 
operation of the FIST DMD by CPT Gahagan, an instructor from the Gunnery Department 
of the US Army Field Artillery School. The Human Engineerlng Laboratory provided 
training equipment for the students. The test participants were trained Fire Support Teams 4 
(MOS 13F) from the 82nd Airborne Division, Ft. Bragg. 

D. Input Database 

The tactical scenario database contained all fire support control messages for a limited 
scenario of a mechanized infantry battalion of an armored division. The SCORES, Europe TIT, 
Sequence 2A was used to generate targets expected to be fired by a battalion in sustained 
combat operation. The battalion is constrained by ammunition resupply under normal 
operations, however, it was decided that ammunition resupply should not be a limiting 
condition in this test. The entire sc+%ario was played in retrograde mode. 

The data base consisted of 36 two hour cells of messages, 12 two hour cells of low 
Intensity, 12 two hour cells of me&urn intensity and 12 two hour cells of high intensity, 
Intensity is defined by the number of initiatin, 0 messages per two hour cell as given in 
Figure 6 and the message stream that follows each initiating message as given in Figure 7. It 
can be seen that intensity is a function of the number of initiating messages and their 
subsequent messages. The 36 two hour cells of data were arranged such that all permutations 
of the three intensities (L-M-H) appeared twke. Ninety percent of the fire missions had 
normal priority and the other ten percent had urgent priority, 

TV. 

A. &z&mental Design 

DATA COLLECII’ION 

1. The two factors that were tested in this experiment are meswe intensity Factors 
and communication degradation. Three levels of message intensity were tested with each of 
the three levels of communication degradation giving nine test combinations. The levels of 
each factor were d&ned zs follows: 
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FACTORS 

1) INTENSITY (per two hour block) 

B MESSAGE TYPE LEVELS 

LOW Medium High 

Fire Mission 1, Fire For Efkct 4 8 12 
Fire Mission 2, Adjust Fire 2 4 6 
Fire Mission 3, Immediate Smoke 0 1 1 
Artillery Target Intelligence 18 12 6 

2) COMMUNICATION DEGRADATION 

00% Message Loss 
15% Message Loss 
30% Message Loss 

FIGURE 6 
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LEVEJA 

MESSAGE SEQUENCE. L.M H 

1) Artillery Target Tntelligence 18 12 6 
ATI FO--,FiST+FDC 

2) Fii Mission., Fm for Effect: 4 8 12 
FR GRYD FO-#FlST4+FDS 
MT0 FOtFIST*FDS 
SHOT FW-FIST* FIX 
EOM FO +FW-+FDS 

3) F”rre Mission, Adjust FIR 2 4 6 
FR GRID FO -+FIST+F’DS 
MT0 FO+FIST+FDS 
SHOT FO+FIST*-FDS 
SAC 1) FO-,FIST~FDS 
SHOT FO+- FISTC-FDS 
SAC21 FO-@IST+FDS 
SHOT FO+-FIsT+FDS 
SAC31 FO -FTST+J?DS 
SHOT FO +- FTST+ FDS 
EOM FO -FIST--,FDS 

4) Fire Mission, Tmmed. Smoke 
Same as Adjust Fire Mission 

0 1 1 

FIGURE 7 
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Message Tntensi ty 

E - low 

M = medium 

H - high 

Communications Degradation 

0 - 0% degradation 

1 - 15% degradation 

2 - 30% degradation 

2. Design Matrix It was decided that the smallest period of time reasonable to teSt any 
one of the nine treatment combinations was two hours. Since the testing of all nine 
treatment combinations require a minimum of 18 hours of testing and realistically could not 
be completed in one day, a randomized incomplete block design was constructed so that the 
day-today variability would not influence the results. The nine treatment combinations were 
divided into blocks of three and the three blocks were run over a three day period. The 
assignment of the treatment combinations into blocks was based on a confounding scheme. 
This scheme assures that the effects of message intensity (I) and communication degradation 
(C) and the interaction of these two factors (1 x Cl on a FTST HQ’s ability to perform fire- 
support coordination can be measured. &cause time constraints pet-mitt& only two 
replications, part of the precision of the estimate of the interaction was sacri&ed (i.e. blocks 
within replicate 1 were confounded with the linear component of the I x C interaction and 
blocks within replicate 2 were confounded with the quadratic component of the T x C 
interaction). Randomization of treatment combinations within blocks and blocks within days 
was performd. 

The experiment was repeated for four FIST teams, so that team-to-team variability w 
included. In addition, software changes were implemented between teams 2 and 3 as a result 
of inform&on from a pilot test. The pilot test was conducted before the actual test and 
resulted in changes to the software to maAe it tactically more realistic. One sjgnifimnt change 
was to have the l?DS send one SHOT messge per call-for-fire rather than one SHOT message 
per volley. Capability for status requests was implemented in the FDS at this time also. 
E~zuse of these changes, s&ware was made a factor in the experiment so that the variability 
could be accounted for due to the software changes. 

The design matrix is shown in Figure 8. The FTST teams were tested sequentially, one 
at a time for six days. The six days are shown in the design matrix and the tests were run in 
the order given wjthjn each day. 
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V. DATA ANALYSTS 

A. Statistical Analysis 

1. Effect of Factors on Messaee TrafEc. The total number of messages generated for 
each experimental condition over a two hour cell was used to evaluate and validate the ef!fect 
that the different factors and their interactions had on message trafIic. EIased on the way 
intensity and communication degradation were definti in planning this experiment, we would 
expect these two factors to have a significant effect on message trafIic. An increase in 
intensity levels should result in an increase in +he number of messages generated, Similarly, 

B an increase in communication degradation should result in an increase in the number of 
me-es it takes to complete a fire mission or to forward an artillery target intelligence 
message. To some this may seem counter intuitive, however, in degraded communications 
the messages are being sent but not received and this results in retransmissions increasing the 
message trafEc. The other factors specified in the design, including the two different Fire 
Direction Simulator software programs, were also included in this analysis. 

The number of messages observed in each test cell are shown in Figure 9. An analysis 
of variance was performed on this measure with all replicate interaction terms pooled for the 
error term. A second analysis of variance procedure was then performed with additional 
interaction terms found not to be significant alsq being pooled with error. The ANOVA table 
for the final reduced model is shown in Figure 10. It should be noted that since block was 
confounded with components of the intensity-degradation interaction, it is not meaningful to 
test any term in the model containing block. A star next to the F-statistic indimtes that the 
factor is significant.. E&sed on the calculated F-values, intensity, degradation, intensity- 
degradation interaction, software, and intensity-software interaction, were found to have a 
significant effect on the message trafEc. 

The effect that intensity, degradation and their interaction have on message &EC is 
summarized in Table 1. Table 1 gives the average number of messages per two hour mll, ,u, 
and the number of cells in the average, N, for the given factors and their marginal &ects 

B (averages over the rows and columns). Looking at the average number of messages generated 
for each level of intensity presented in the right hand column of Table 1, one sees that there 
Is a signi&nt increase from 361.46 to 882.50 as intensity increases. Similarly, an increase in 
communication degradation increased the average message trtic flow from 462.13 to 798.58. 
Tn addition, in comparing the mean change between the different levels of communication 
degradation for each level of intensity, a positive interaction effect can be noted. There was an 
increase in the mean of about 200 messages between G!Y!! and 3001$ degradation for low 
intonsity ccmpared to an increse of over 300 messages for medium and 500 messages for 
high intensity. 

The effect that soft-are and the software-intensity interaction has on message t&Eic is 
summer&d in Table 2. The average number of messages generated per IWO hour block for 
the original FIX software program was 704.67 compared to 545.83 for the modified program. 
The software was changed to produce a shot message every call for fire instead of every 
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Figure 9 
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ANALYSIS OF VARLANCE (EFFECT ON MESSAGE TRAFFIC) 

I ANALYSTS OF VARIANCE 
(ANOVA) 

SUMOF- 
SQUARES 

288.00 

454104.50 

67391.34 

8701.11 

40628.52 

3259353.58 

152010.75 

1362202.08 

103933.83 

152325.79 

5600939.55 

MEAN 
SQUfkRE 

288.00 

454104.50 

16847.54 

217528 

5078.56 

162%76.79 

76005.37 

681101.04 

25983.41 

3542.46 

F 
RATIO 

0.08 

128.19” 

460.04"' 

21.46” 

192.27” 

7.33.’ 

Figure 10 
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Average Number of Messages 
Per Two Hour Cell 

Communication Degradation MI> 

zenslty 00 15 30 

8 8 8 24 
LOW 266.88 351.88 465.63 361.46 

8 a 8 24 
EDTUM 461.00 636.00 798.38 631.79 

8 a 8 24 
KIGH 658.50 857.25 1131.75 882.50 

voky which 3s a more realistic representation of how TACFTREIEES functions. Therefore, 
one would expect the average message flow to be less for softtvare 2 than 1. Also, one would 
expect a greater change bemen low, medium and high intensity for software 1 than 2. From a 

Table 2, the dlf%erence between means for low and high intensity for software 1 is over 600 
messages compared to a difference of less than 400 for the modified software. To obtain a 
realistic description of the effect that message intensity and communication degradation have 
on network message traflic flow and on the Fire Support Teams’ ability to perform effective 
fire support coordination, the ar.aJysis from this stage on will be based on the second half of 
the experiment using the modified software. 
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TAlBEE 2. Software by Inten&y 

Average Number of Messages 
Per Two Hour Cell 

Intensity 

SoftWare LOW Medium Hgh 

12 12 12 36 
1 386.5 707.58 1019.02 704.67 

12 12 12 36 
2 336.42 556.00 745.08 545.83 

24 24 24 N 
462.13 616.W 798.58 k 

2. Freuaenclsr Count by Number of Tries of Messages AcknowI&&. ‘fh~tidy, 
the number of tries it takes for a message to successfully reach its destination and for an 
a&nowiedgement to be received by the sender should only be af&cted by the percent of 
communication degradation in the communication networks. Providing one knows what the 

D 
actual percent degradation is, one can determine the theoretical distribution of how many 
times a message is sent before it is acknowledged for each level of communication 
degradation. When there is no communication degradation, one would expect that all 
messages would be acknowledged on the first try. In 15% degradation the probability that a 
message gets through and is acknowledged on any try is (l-.15)(1-.15)l.7225. The 
probability that a message does not get acknowledged on a given try is l-.7225, Using these 
probabilities, we wn compute the probability that a message is acknowledged in a given 
number of tries. Table 3 gives the theoretical distributions for the probability a mesaage gets 
acknowledged in n tries for 15 and 3op16 degradation. 

Using the theoretical probabilities from above and the total number of messages actually 
aclmowledged under each degratition level, we can check the actual ef’fect of communication 
degradation wjth the expected effect as a check on the laboraton system. Figure 11 shows 
the distribution of messages xknowledgcd by try number in “perfect” communications (0% 
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TABLE 3. Tk0ticz9 Distributions for Messages Acknowledged 

Yumber of General 
Tries Formula 

Degradation Level 

15% 
I 

30% 

. . 

n n 

P P -7225 -7225 

P(l--P) P(l--P) .2005 .2005 

p(l - PI2 p(l - PI2 .0556 .0556 

p(1 -PI3 p(1 -PI3 .0154 .0154 

p(l -PI” p(l -PI” 

. . 

I . . 

.49x .49x 

.2499 .2499 

.I274 .I274 

.0650 .0650 

. . 

degmdati~d for %fhVare 2. “Perfect” communication was not quite perfect since the bit 
boxes did not have net monitoring and message collisions resulted. Figures 12 and 13 give 
the same distributions for 15 and 30 percent degradation. Very good agreement was 
observed, and as shown in Appendix B, when tested statistically the distribution of messages 
acknowledged by number of tries is a function of communication degradation only and is not 
itiuenced by intensity, team variability or krning. I 

3. Time Required to Service a Message. This section investigates the effect that 
degradation and intensity had on the time it took for FIST HQs 3 and 4 to service a fire 
r~uest @‘FL) message and an artillery target intelligent (ATT) message. Since fire requests 
are given a higher priority than ATf’s and require more processing by the FIST team, 
message type had to be considered a factor in this analysis. 
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Figure 12 
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observations comprised tightly more than four permnt of the total service times observed. 
They were removed from cl-q analysis of variant procedure found below, but were 
considered in interpreting the final results. The median for each experimental condition with 
the outliers removed is given in Table 4 below. 

TAELE 4. Median Setvice Time 
by Experimental Condition 

2 

1 

2 

2 w 
ATI 

3’ n/l 
H l-t- L 

4 M 
t H 

I I L 
3 M 

ATI II 

1 H 

3 
Fire 

Request 

i 
4 

L 
M 
H 

L 
M 
H 
L 

3 M 
Fir@ H 

Reqxst - 
L 

4 M 
H 

T radat 

0’ 1s 30 

9.2 
10.5 
9.0 

12.0 
14.0 
14.5 

27.0 
8.5 

23.0 

9.3 6.1 6.0 
6.5 6.5 9.0 
6.5 9.0 9.0 

9.0 4.2 9.2 
9.5 10.3 9.5 
3.5 8.3 40.0 

6.3 7.8 5.5 
5.3 9.0 8.1 
7.5 6.5 11.5 
15.5 22.10 z5 
18.3 20.5 15.0 
17.3 16.0 21.5 

12.5 8.0 9.0 
6.3 8.5 9.3 
6.7 11.0 10.5 
14.5 14.5 18.3 
14.3 16.7 18.5 
13.3 14.5 22.8 

8.0 9.5 8.0 
9.8 10.9 8.4 
11.3 8.8 17.5 

a 
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Further investigation of the data reded a positive correlation between the standard 
deviations and the experimental group means. Correlation be-n the standard deviations 
and group means is often mmpanied by marked non-normality and non-homogeneity of 
variance, and indicates that the particular form of the original observations is unsuitable for 
ANOVA procedures. However, a transformation can be determined which makes the 
standard deviation independent of the mean, corrects non-homogeneity and also results in 
the observations being distributed more normally. In general, if a signiftmnt functional 
relationship between the standard deviation and the group means an be determined, then the 
transformation is the integral of the reciprocal of this functional relationship. Following this 
procedure, the following transformation was developed: 

1.3 In (-2.6 + .8 ( service time 1) 

Ir 
The ttansformed data became more normal and the assumption of homogeneity of variance 
was confirmed. 

An analysis of variance procedure was performed on the transformed data. One slight 
mod&ttion to this procedure was that due to unequal experimental group sizes, the sum of 
squares for all terms in the model, except the error term, was weighted by the harmonic 
mean. The final reduced ANOVA Table is presented in Table 5. 

The most signihcant term in the analysis was team. The median service time for team 3 
was 14.5 seconds which is substantially higher (73 srcent) when compared to the 8.5 seconds 
for team 4. This trend is prevalent for both fire requests and ATI messages, but is magnified 
when one considers tist Ere requests. As suspected, type of message also influenc& service 
time. Although fire requests have a higher priority than ATIs, they contain more information 
that has to be recorded and verified by the FIST HQs. Therefore, it was not surprising that 
the median time (13.5 seconds) for fire requests was 55 percent higher than the median 
service time (8.5 seconds) for ATIs. 

From Table 6, which considers both fire requests and ATIs, it is obvious by examining 
the marginals of this table that an increase in intensity or degradation resulted in an increase 
in the FIST’s service time. There was a 37 percent increase in median service time as 

+ degradation increased from 0 to 30 percent and a 37 percent increase in median service time 
as intensity increased from low to high. However, the effect that intensity had on the RST 
HQs service time is not as predominant or does not exist when considering ATh and fire 
requests separately. The median service time for ATTs increased 12 percent from low to high 
intensity as observed in the right marginal of Table 8. Contrary to this trend, the FIST HQ’s 
ability to service fire requests remained essentially the same in either low or high intensity as 
shown in Table 7. One possible explanation is that as intensity increased, more effort w& 
made to servie the fire request messages that have a higher priority than ATIs. 
Consequently, ATTs were not serviced as quickly. 

The effect that degradation had on service time is mnsistent with the above trend for 
both ATIs and fire requests, As observed in examining the bottom marginals of Tables 7 and 
8, an increase in degradation from 0 to 30 percent resulted in the F’IST HQ’s median service 
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TABLE 5. Analysis of Variance 
(Effect on Service Time) 

SOURCE 
Replication 

vlessageType 

xk within Rep 

essage Type X 
ock within Rep 

Team 

Team X 
ock within Rep 

Intensity 

Intensity X 
MessageType 

Intensity X 
TC%JTl 

Degradation 

legradation X 
vlessage Type 

Degradation 
XTeam 

Tntensity X 
Degradation 

Intensity X 
Degradation 

XTeam 

Pooled Error 

Total 

DEGREEs OF 
FREEDOM 

2 2.60 

4 

4 

790 

825 

290 

SUM OF MEAN 
SQUARES SQUARE 

5.62 5.62 

6.01 6.01 

16.45 4.11 

F 
RATTO 
8.64** 

9.2s** 

7.36 1.84 

1 SO.98 1 SO.98 232.3** 

17.1 4.28 

14.77 7.38 11.2** 

9.48 4.74 7.18** 

7.25 3.63 

52.68 26.34 

5.52 2.76 

31.68 

11.99 

5.5** 

39.91** 

4.1s** 

l.% 

12.01** 

4.54** 

520.9 

1.30 

7.92 

3.00 

.66 

860.39 

a 

a 



time hnxeasing 29 percent and 13 parent for fire request and ATIs, respectively. 

TABLE 6. Intensity by Degradation 
Median !&mice TLme 

Fire Requests and ATIs 

HIGH 10.5 12S 18.0 13.00 

9.5 11.0 13.0 

The ANOVA table showed a significant interaction intensity degradation effect on service 
time. As observed in Table 6, this trend was slight in low or medium intensity as degradation 
increased from 0 to 30 percent. However, in high intensity, the increase from 0 to 30 percent 
degradation resulted in a 71 percent increase in service time which was substantially higher 

a than the increases observed in low or median intensity as degradation increased. This 
interaction effect was prevalent for both ATIs and fxre requests. 

For ATIs, the median service time increased only slightly as degradation increased from 
0 to 30 percent for low or medium intensity as shown in Table 8. Similarly, for fire request 
messages, the increase in degradation from 0 to 30 percent was only 4 percent in medjum 
intensity. This trend was more noticeable in low intensity where the me&an RST HQ’s 
service time for fire requests increased almost 28 percent as degradation increased from 0 to 
30 percent. However, in high intensity, the increase from 0 to 30 percent degradation 
resulted in a substantial increase in service time for both ATTs and fire request messages 
when compared to any increase observed in low or medium intensity. The median service 
time for fire requests increased 46 percent from 0 to 30 percent degradation and for ATIs 
increased 179 percent. This was due to the fact that thk largest median service time observed 
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TABLE 7. Intensity by Degradation 
Median Service Time 

for Fire Requests 

ntensity 

EDTUM 

HTGH 

Communication Degradation (016) 

12.5 13.5 16.0 

11.5 13.5 12.0 

12.0 13.0 17.5 

12.0 13.0 15.5 

14.5 

12.0 

14.0 

for ATIs and fire requests occurred under 30 percent degradation and high intensity- In 
addition, it was only under this condition that the median service time (19.5 seconds) for 
ATIs was higher than for the median service time (17.5 seconds) for fire requests. This seems 
to substantiate the hypothesis that under increased workload, the FIST HQs spends more 
time trying to service fire request messages while ATIs are left in the DMD queue. 

Although replication @rning) was significant, only a slight decrease (8 percent) in 
service time was observed between rephcate 1 and repliwte 2. 

The final step in this analysis was to categorize the removed data by various a 

experimental conditions. The following trends were worth noting. Of the 36 service times 
removed from the data base, over one third were observed under 30 percent degradation and 
high intensity. In addition, 75 percent were observed from 30 percent degradation with over 
92 percent coming from two hour cells that were run under 15 or 30 percent degradation. 
These observations substantiate that increased degradation and the combined effect of 30 
percent degradation and high intensity caused delays for the IFIST HQs in servicing messages. 
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TABLE 8. Intensity by Degradation’ 
Median !%mice Time 

for ATIs 
L 

Intensity 

LOW 

Communication Degradation (%) 

00 15 30 

8.5 8.5 8.5 8.5 

MEDTUM 7.5 9.5 9.0 3.0 

HTGH 7.0 9.5 19.5 9.5 

8.0 9.0 9.0 

TV. CONCLUSIONS 

Software, intensity, communication degradation, software-intensity interaction and 
intensitydegradation interaction all have a significant effect on message traffic through the 
FIST HQs. A change from 0 to 15 percent communication degradation resulted in an average 
increase of 33 percent in the number of messages generated. A change from 0 to 30 percent 
communication degradation resulted in an average increase of 73 percent in the number of 
messages generated. Medium intensity generated 75 percent more messages than low 
intensity and high intensity generated 144 percent more messages than low intensity, on the 
average. Software was added as a factor in the experiment to control for the variance induced 
by the change in software. Knowing that the change was significant and the second set of 
software was more correct tactically, only the second half of the test was analyzed for the 
other measures. 

The number of transmissions of a given message before an acknowledgement is teozived 
is important because the RST DMD allows only four tries and then voice contact must be 
made to synchronize authenticator codes. Voice transmissions on digital nets wuse 
contention. In 15 percent degradation .2 percent of the messages required more than four 
transmissions and in 30 percent degradation 2.4 percent of the messages required more than 
four transmissions. Although these percentages are small, because of the large number of 
messages on any net the actual number of voice transmissions required may be tactically 
significant. 
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The median service time for messages was influenced significantly by team, message 
tppe, replication, intensity, degradation, and many of the interaction terms. It is not 
surprising that when measuring a human response time that the humans, or FIST HQs, are 
the most significant factor. Replication being signscant in this instance aan be translated to a 
slight learning efkt since the first repliwte occurred on the first three days of testing and the 
second replicate occurred on the last three days. An increase of 32 percent in median service 
time for fire requests and ATk combined was observed from 0 to 30 percent degradation and 
an increase of 34 percent was observed as intensity increased from low to high. The 
combined effect of intensity degradation is most noticable in high intensity. That is, 
communication degradation has little effect within low intensity or medium intensity, but has 
a very large effect in high intensity. ESec#use intensity is defined by weighing the initiating 
message types (fire requests and Al%) when we breakout service time by message. type, we 
no longer observe the effect of intensity. What we do notice, however, is that although fire 
requests take longer to processes in general than ATIs, as communication degradation 
increases within high intensity the rate at which service time increases for ATIs is 
considerably higher than the rate of increase for fire requests until finally at 30 percent 1 

degradation ATIs take longer to process than fire requests. Service time in high intensity 
increases 179 percent for ATIs and 46 percent for fire requests. What this would indicate is a 
queueing problem at the FIST HQs. Fire requests are higher priority than ATIs and are 
selected out of the queue before ATIs for processing. Therefore, although it may not take as 
long to process ATIs they are remaining in the queue longer until finally their service time 
exozeds that of fire requests because service time is both the time spent in the FIST DMD 
queue and the human processing time. 

At the time this paper was presented, the complete analysis of the data produced was not 
completed and is, therefore, not presented in these proceedings. Complete analyses will be 
published in a BRL report upon completion and can be requested from the authors. 
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APPENDIX A 
General Analysis of Variance Procedure 

Analysis of variance (ANOVA) is a common procedure which tests the hypothesis that 
there is no statistical difference between the mean value of data drawn from TWO or more 
populations. One can think of a population as data collected under the same experimental 
conditions. This procedure utilizes the F-statistic which is a ratio of the estimated variance 
(mean square) of the factor or interaction one is testing divided by its associated error. The 
number of factors evaluated and their associated error is dependent upn the model one 
chooses, and if the different factors in the model are fixed or random. A factor is considered 
random if it contains categories or levels which are considered samples from a larger group. 
A ftxed factor is one in which its categories or levels exhaust the cases in which there is 
interest. Also, the categories are not merely samples. 

Corresponding to the F-statistic is a sign&m level (1-a) where a is the probability of 
rejecting a true hypothesis. For this analysis, Q will be equal to .OS. If the calculated F- 
statistic is larger than the tabulated F-value, then the hypothesis that the factor has no efkct 
in a given measure of performance (MOP), is rejected, However, the test of significance 
using the F distribution is valid if the observations (MOPS) are from normally distributed 
populations with mual variances. Tnvestigation has shown that results of the analysis are 
robust to the departure from the assumption of normal distribution but the homogeneity of 
variance assumption should be checked. 

The model on which our analysis is based contained all possible treatment combinations 
as specified by the design except interaction terms that contained replication. If only one 
observation per experimental condition was available, the interaction terms containing 
replication were assumed not to be significant and were included in the estimate of error. Tf 
more than one observation per ce4 was available, then Bartlett’s test was performed on the 
these cells sample variances. Tf these mean squares or variances were found to be different, 
then an appropriate transformation was performed on the MOP being evaluated so that these 
estimates can be used as the error term in the model. 

&cd on the above described model and the fact that replication was the only term 
considered random, the expected mean squares were determined as shown in Table A-l. 

Examining the components of the error mean square, the F-ratio can be determined for 
each treatment combination. For example, the expected mean square for replimtion contains 
a source of variation for replication and pooled error. Therefore, the proper denominator for 
the F-ratio Is the mean square for error. Due to the model specifications, the pooled error 
:3rrn happens i9 ts the proper denominator to use for every term in the model. The 
estimatid mean square for each treatment combination is obtained by calculating each effects 
sum of squares and dividing by its associated degrees of freedom. 

The degrees of freedom used to calctrlate mean squares for each treatment combination 
are given in Table A-2. By comparing the calculated F-statistic to the tabulated F-value one 
can determine if each treatment combination had an efkct on fire support coordination based 
on the MOP being evaluated. 
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TABLE A-l. Analysis of Variance 
(Expected Me& Squares) 

ANAJaYSIS OF VARIANCE 
(ANOVA) 

1 DCPECIEDMEAN 
SOURCE SQUARE 

Replication 
Software 

Block within 
Rep 

Software X Elock 
within Rep 

Team within 
Software 

Team within Soft X 
Hock within Rep 

lntensity 
Softivare X 
Intensity 

Tntensity X 
Team w Software 

Degradation 
Software X 
Degradation 

Team within Software 
X Degradation 

Intensity X 
Degradation 

Soft X Intensity 
X Degradation 

Team within Software 
X fntensity 

X Degradation 
Error 
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TABLE A-2. Analysis of Variance 
(Degrees of Freedom) 

ANALYSIS OF VARIANCE 
(ANOVA) 

DEGREES OF 
SOURCE FItmOM 

Replication 1 
I Software I 1 I 
I Block within I I 

Rep 
Software X Block 

within Rep 
Team within 

Software 
Team within Soft X 

1 Block wIthin Rep 1 
I Intensity I 2 I 

I Software X 
Intensity I 2 I 

I Tntensity X 
Team IV Software I 4 I 

I Degradation I 2 * I 

I Software X 
Degradation I 2 I 

I Team within Software 
X Degradation I 4 I 

Team tvithin Software 
X Tntensi ty 

X Degradation 
Pa&d Error 

Total 

8 

19 
4 

51 
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The 5r,al step in the ANOVA procedure is that the interaction terms found not to be 
s;gslccs:‘L CU-I &o be pooled with the error component of the model and the analysis redone. 
This procedure reduces the model and increases the. degrees of freedom for error and 
subsequently increases the cotidence in conclusions reached if both analyses agree. 
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APPENDIX B 
(Contingency Table Analysis) 

Contingency table analysis is a method used to make direct inferences about whether 
two or more population distributions are identical to some theoretical form. Ordinarily, the 
reason for comparing such distributions is to find evidence for independence of attribute or 
experimental conditions. In short, we are going to employ a test for independence for each 
experimental unit in our design matrix. The general pro&ure is to statistically compare the 
sLampIe or observed frequency for each experimental unit to the theoretical expected 
frequency. 

The statistic used to test if the observed frequency for each treatment combination is 
equal to the expected frequency is the chi-square statistic. This statistic is defined as 

where Pa is the number of experimental units and fi and e are the observed and expected cell 
frequencies. The ca@lated statistic is then compared to a tabulated value which is based on 
an alpha level equal to .05 and the number of degrees of freedom associated with the analysis. 
The number of degrees of freedom is equal to (he number of experimental unit minus one, 
minus the number of parameters estimated from the sample data which are needed to 
determine the expected frequency. If the calculated chi-square statistic is larger than the 
tabulated value, the hypothesis that the experimental treatments are not associated with the 
MOP being analyzd is rejected. One restriction is that the sample size must b sufWently 
large so that none of the theoretical frequencies are less than 1 and not more than 20 pcent 
are less than 5. 

For MOP4, which is the frequency aunt of the number of times a message is sent 
before it is acknowiedged, the theoretical distribution can be determined for each treatment 
combination without any sample results. At zero percent degradation, the probability of 
having a try number greater than zero, which can be linterpreted as the probability of a 
message not getting through and/or an acknowledgement not being returned on the first try, 

b 
is zero. At fifteen percent degradation the probability of a message getting through and an 
acknowiedgement returned on the first try is recorded for each two-hour block run with 15% 
degradation to have a try number of zero. Similarly, with 30% degradation, one would expect 
49 percent of the total messages recorded per two hour block to have been tried only once. 
The th~retical probability by try is given in Tables B-l and B-2. 

If needed three separate contingency analyses will be performed for each level of 
communication degradation. Howver, at zero percent degradation all of the messages should 
ba acknowledged after the first try. The expected number of messages by try number for the 
24 czl!~ run at each level of communication degradation is presented below. It is worth 
Rp-j,yc ::mt sin2 no parameter estimation is needed to determine these theoretical 
dis;.r&tic;ls tl:e degrees of freedom for each analysis is ec,~l to the number of cells minus 
o’i;e. T1:~;3 thear&ci?l frequencies were . compared to the observed frequencies using the 
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TAE!.LE B-1, Probability of a Message Edng 
Acknowledged by Try 

C 15% Degradation) 

11 ,723 .201 .056 ,021 1 

TABLE B-2. Probabtii ty of a Message Being 
Acknowledged by Try 

(30?! Degradation) 

I 30 % 11 .490 .250 .128 .132 1 

above described procedure.Then, using contingency table analysis outlined above, one can 
determine if the other experimental factors had an effect on the number of tries it takes 
before a message is acknowledged. 

The fist step of this analysis Was tb verify that the uniform numbr generator did 
produce fif&en and thirty petcent total message lost for each set of twelve cells run under the 
mod&d software. Using the chl-square statistic tined above, one wn test if in fact the 
observed and expected number of messages never degraded under 15 and 30 percent 
degradation are statistically the same. 

For fifteen percent degradation, the chi-square statistic was calculated as 2.257 with 11 
degrees of freedom and found not significant at alpha equal to .OS. Similarly, at 30 percent 
degradation, the statistic was calculated as 1.175 with 11 degrees of freedom and again found 
not to be sign&ant. In fact, over each set of twelve cells, it was calculated that .8525 and 4 

.7054 of the messages were never degraded for 15 and 30 percent degradation, respectively. 

J%ving veri6ed that ETHER was producing the desired degradation levels in our 
communication network, the next step is to determine if intensity and team variability had an 
e&t on the distribution of message. tries for acknowledged messages at each degradation 
level. 

At 0 percent degradation, one would expect all of the messages to be acknowledged on 
ti:o first try. As seen from Table B-3 below, almost all (98.6%) of the messages had 
:snccc&u??y bezn sent and acknowledged. Tt is obvious that intens& and team variability had 
r;o &c: on a mesee reaching its destination at zero percent degradation. The 1.4 percent 
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TABLE B-3. Observed Number of Messages Acknowledged 
by TV 

C00?41 Degradation) 

Rep 

1 

2 

Software 

2 

2 

Team 

3 

4 

Try II-T- Intensity 1 2 

L 
M 
H 

L 134 9 134 9 
M 192 3 192 3 
H 265 0 265 0 

L L 121 1 121 1 
M M 201 3 201 3 
H H 277 3 277 3 T 

I 112 2 112 2 
192 4 192 4 
269 2 269 2 

116 2 116 2 
198 2 198 2 
271 2 271 2 

3 

- 

1 
0 
0 

0 

i 

0 
0 
0 

0 
0 
0 

1 

of the messages that did not get through on the first try can be attributed to bit box 
collisions which is a hardware phenomena. This phenomena occurs when two messages enter 

b 
the bit box on opposite ends simultaneously, collide and then are lost. 

A contingency table analysis was petformed on the 12 two-hour cells run at 15 percent 
communication degradation. The observed number of messages acknowledged for try one, 
nvo, three and tries greater than three were mmpared to the exmted number. The 
&-n&& chi-z~,uare statistic MS 44.2 with 47 degrees of freedom. This statistic was not 
y>yG$~tj~;;y sizni?!;lcant and cne can only conclude that the observed and theoretical 
distributions are the same. 

.For 30 percent degradation the contingency table analysis again revealed that intensity, 
team variability and replication did not influence the number of tries it took for a message to 
be acknovt&dged. The chi-square statistic WBS 30.29 with 59 degrees of freedom. 
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Tn conclusion, based on our experiment, we have demonstrated that the number of tries 
it took before a message was acknowiedged is a functktn of the percent degradation exhibited 
in the communications network and it is not statistically influenced by intensity, team 
variability or replication. The theoretical and actual frmuency distributions by try number are 
given in Tables WI through 7 for 15 and 30 percent oDmmunication degradation, respectively. 

TARLE WI. Observed Number of Messages 
Acknowledged by Try 

( 15% Degradation) 

Rep Software Tam Tntensity Rep Software Tam Tntensity 

L L 
3 3 M M 

H H 
1 1 2 2 

L L 
4 4 M M 

H H 

Ii Ii 
3 3 M M 

H H 
2 2 2 2 

L L 
4 4 M M 

H H 

1 2 3 3 

96 29 5 3 
153 57 17 2 
194 47 18 6 

76 35 6 3 
166 41 11 3 
197 69 12 6 

92 22 2 3 
143 48 8 4 
197 71 14 7 

88 37 12 5 
150 45 10 8 
206 61 13 4 
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TABLEES, ObsmedNumberof~ 
Acknowledged by Try 

(15% Degradation) 

Rep Software Team tntensity Rep Software Team tntensity 

L L 
3 3 M M 

H H 
1 1 2 2 

L L 
4 4 M M 

H H 

L L 
3 3 M M 

H H 
2 2 2 2 

L L 
4 4 M M 

H H 

102.6 28.5 7.9 2.9 
153.9 42.8 11.9 4.4 
205.2 57.1 15.9 5.8 
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1 

2 

TABLE I%. Observed Number of Messages 
Acknowledged by Try 

I3#!41 Degradation) 

Software 

2 

2 

1 Team Tntensity 

H 

L 
3 M 

H 

L 
4 

I 
M 
H 

7 
greater 

4 

12 
12 
19 

8 
12 
18 

10 
16 
17 

9 
14 
22 
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Rep Software Team Tntensity 

1 

2 

TABLE B-7. l%peaed Number of Messages 
Acknowledged by Try 

(30 46 DEGRADATION) 

, Try 

1 2 3 4 

greater 

4 

L 72.4 
3 M 107.4 

H 147 
2 

37 13.9 9.6 10 
54.7 27.9 14.2 14.8 
7s 38.3 19.5 20.3 

L 64.2 32.7 16.7 8.5 8.8 
4 M 109.8 S6 28.6 14.6 15.1 

H 140.6 71.7 36.6 18.7 19.4 

L 61.7. 31.5 16.1 82 8.5 
3 M 110.3 56.2 29.7 14.6 15.2 

H 148 75.5 38.4 19.6 20.4 

2 8 
I I H II 168a1 I 
I I II I 

8.5 
14.2 
22.3 

8.8 
14.8 
23.1 
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Abstract 

This paper presents a technique which was used to produce an approximation of a 

complex computer model, the Teisberg Model. The technique employs a complete 

24 factorial design and uses the statistically significant effects as coeffi- 

cients of the estimating equation. 

Disclaimer 

The assumptions, procedures, analysis, conclusions, and recommendations con- 

tained in this paper are solely those of the author and do not represent any 

official policy of the Department of Energy,. the Department of Defense, or US 

Government. 
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An Approximation of the Teisberg Model 

Background 

An approximation was constructed of the Teisberg model which estimates the 
economic benefit of constructing and maintaining a Strategic Petroleum Reserve. 
pour input factors, which replicated significant independent economic 
assumptions were identified as candidates for inclusion within the simplified 
model. The four variables were: 

1. p = Annual probability of a major oil disruption 
2. e = The short run price elasticity of demand for oil 
3. b = The BAU price of crude oil * 
4. d = The discount rate 

Using a one variable at a time approach three of these variables were set at 
the center, of their range of interest, and the Teisberg Model estimated 
the net economic benefit (Y) for a low, medium, and high value of the remaining 
variable. 

This was done for the four candidate variables. An estimate of the rate of 
percent of change of the economic benefit Y to the percent change of the input 
factor X was calculated i.e., dY/Y. 

x7x ' 

The results of this effort were: 

Input factor dY/Y 
dx/x 

Probability of a major disruption 0.543 
Short run price elasticity -2.196 
BAU price of crude oil 0.330 
Discount rate -0.864 

It was determined that only the short run price elasticity for demand need be 
considered when estimating the results of the Teisburg Model. 

A linear regression was then performed on the three observations of the 
Teisberg Model with the low, medium, and high values for the elasticities and 
the three remaining variables set at the center of their range of interest. 

The resulting equation was Y = 275.85 e + 83.67 where e is the elasticity of 
demand, -0.3 < e < -0.1 and Y is the estimate of net economic benefit. The 
R2 value was 0.86~bhich seems to indicate a good approximation. However, 
only three observations were used and two are required to determine a straight 
line, leaving only one degree of freedom, and thus a high R2. 

The Alternate Estimate 

At the request of the principal investigator the sound principles of 
experimental design were applied to the same problem with the hope that an 
improvement might be made in the estimating equation. The remainder of this 
paper and the appendixes are the result of that request. 
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The estimate of the net economic benefit using the techniques of experimental 
de& is: 

y r-119.57 - 1137.87d + 398.00 e + 2148.00 p 

- 4216.00de - 7488.00 dp + 5246.00 ep where 

d = discount rate 0.025 < d < 0.1 
e = elasticity of demand--O.3 < e < -0.1 
P = annual probability of a maTor>isruption 0 < p < 0.1. - - 

Details of the theory and construction of this estimate appear in the 
appendixes. The relative merits of the two estimates may be established by 
examining the estimates of both equations using the observations used in this 
study. 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Teisberg Original Estimate Alternate Estimate 
Value Estimate Residual Estimate Residual 

3.48 0.92 2.56 12.86 -9.38 
14.69 0.92 13.77 3.34 11.35 

2.56 0.92 1.64 12.86 -10.30 
15.72 0.92 14.80 3.34 12.38 
18.71 56.09 -37.38 8.14 10.57 
50.06 56.09 -6.00 61.86 -11.80 
17.28 56.09 -38.83 8.14 9.14 
49.97 56.09 -6.12 61.86 -11.89 

7.95 0.92 7.03 0.40 7.55 
27.01 0.92 28.09 47.04 -20.03 
27.01 0.92 11.60 0.40 12.12 
43.39 0.92 42.47 47.04 -3.65 
67.62 56.09 11.53 100.60 -32.98 

169.16 56.09 113.07 210.48 -41.32 
113.90 56.09 57.81 100.60 13.30 
275.48 56.09 219.37 210.48 65.00 

Sum of squared residuals t( Y - Y )2 70,564.85 

mean square error c ( Y - Y )2/16 
(unadjusted for degrees of freedom) 

Table 1 

Caveat 

4410.30 

8,767.37 

547.96 

This estimate or approximation of the Teisberg Model was based on assumptions 
for several input factors which were not varied during this exercise. Changes 
in the values for these input factors may alter the quality of this estimate. 

Next Steps 

There are some promising techniques that may lead to additional improvements in 
an estimate of the Teisberg Model, The first is the application of response 
surface analysis to estimate the coefficient of higher ordered terms. The 
second involves various transformations, of the data, as the first step of the 
analysis. Thirdly, additional input factors might be included in the analysis. 
These techniques used independently, or in conjunction with each other, should 
improve the quality of the estimate. 
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Appendix A 
METHODOLOGY 

Al Factorial Design Methodology 

An experiment was performed to measure the effect of four sets of 
input factors on the average net economic benefit associated with four 
SPR alternatives, as represented by the Teisberg model. Two levels, for 
each set of input factors, were chosen and all 16 possible combinations 
of these input factors, were used as model input to the Teisberg model, 

'This procedure, a 24 factorial design was chosen since it is economi- 
cal, easy to use and provides a great deal of valuable information. 
Specifically a two (2) ,level factorial design has the following 
advantages: 

1. If sets of input factors are varied one set at a time, with 
the remaining factors held constant, it is necessary to assume that the 

effect would be the same at other settings of the other sets of 
input factors. Factorial designs avoid this assumption. 

2. If the effects of input factors act additively, a factorial 
design estimates those effects with more precision. If the effects of 
the input factors do not act additively, factorial designs can detect 
and estimate the interactions which measures the non-additivity. 

3. Factorial designs require relatively few runs per set of 
input factors studied and can indicate major trends and determine 
promising direction for further investigation. To obtain the same 
precision of the estimate of the effects measured, in this effort, forty 
runs would have had to be run, using the traditional, one factor at a 
time approach, rather than the sixteen used in the experiment. 

4. If a more thorough local exploration is needed, it can be ' 
suitably augmented to form composite designs. 

5. These designs and their corresponding fractional designs may 
be used as building blocks so that the degree of complexity of the 
finally constructed design can match the sophistication of the 
problem. 

To perform a Z4 factorial design the two extreme levels (or 
versions), as defined by the principale investigator, were selected for 
the four (4) sets of input factors and all sixteen (16) possible 
combinations were run, which created sixteen observations. The four 
sets of input factors and their levels (or versions) are listed in Table 
A-l on the following page. 
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Input Factor Levels 

1, Probability of a major oil 
disruption 

2, The short run price elasticity 

3, The business as usual price 
for crude oil 

4, The discount rate 

la, 0.0, no chance of a major 
oil disruption during any year 
of the study. 

lb, 0.1 A ten percent chance in 
any given year of a major oil 
disruption 

2a, - 0.3 a low short run 
elasticity of demand for oil 

2b, - 0.1 a high short run 
elasticity of demand for oil 

3a, $52.013 per barrel, 
a low price 

3b, $90.00 per barrel, a 
a high price 

4a, 10.0% the conventional 
government discount rate 

4b; 2.5% a low discount rate 

TABLE A-l 

b The selection of the above levels were determined by the parent study and do 
not represent the policy of the Department of Energy. These levels were used 
solely to evaluate the reaction of the Teisherg Model to changes in the input 
factors. 
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These input factors combine to produce the following 

OBS. 
NUMBER 

PROB. 
DISRUPT ELAS. 

PRICE 
CRIJDE 

UISCOTJNT 
RATE 

TEISBERG 
NET BEN. 

1 la 2a 3a 4a 3.48 
2 la 2a 3a 4b 14.69 
3 la 2a 3b 4a 2.56 
4 la 2a 3b 4b 15.72 
5 la 2b 3a 4a 18.71 
6 la 2b 3a 4b 50.00 
7 la 2b 3b 4a 17.28 
8 la 2b 3b 4b 49.97 
9 lb 2a 3a 4a 7.95 
10 lb 2a 3a 4b 27.01 
11 lb 2a 3b 4a 12.52 
12 lb 2a 3b 4b 43.39 
13 lb 2b 3a 4a 67.62 
14 lb 2b 3a 4b 169.16 
15 lb 2b 3b 4a 113.90 
16 lb 2b 3b 4b 275.48 

Design Matrix 

Table A-2 

design matrix: 

The interpertation of the observations in Table A-2 is easily illustrated by 
observation number 6 which assumes that the annual probaility of a major oil 
disruption is 0.0 i.e. there will not be a major disruption during this study. 
There is a high elasticity of demand for curde oil of -0.1 with a business as 
usual price for crude oil of $52.00 per barrel. Finally a low discount rate of 
2.5% is assumed. 1 

The sixteen observations of the design matrix, may be visualized geometrically 
as two cubes. One possible visualization appears in figure A-l on the 
following page. The observation number is at each vertex. 

312 



- 

W 
u 
k 
u 
u 

E 
W 
E 

w 
U 

I 

a 
l 

u 
I 

m 



A2 Calculation of Main Effects 

The "main effect" of a set of input factors is the change in the response i.e., 
ihe net economic benefit, y, as we move from the "a" case to the "b" case 
version of that set of input factors. To examine the effect of each of the 
selected input factors a table of four column vectors was constructed (see 
table A-3). Each column contrasts eight pairs of estimates of the net economic 
benefit. Aside from experimental error, the difference between the upper 
n.iimber of a pair and the lower number of the same pair is due to the change of 
the input factor that heads the column. For each column the average of these 
eight differences is the main effect due to the associated input factor that 
heads the column. Note that the only difference between the four columns is 
the order in which the observations appear. 

Geometrically. speaking, using Figure A-l the madn effects are calculated from 
the corresponding vertices of the two cubes as described below. 

Input factor 

Probability of a major oil 
disruption 

Left side of both cubes vs. 
the right side of both 
cubes 

Demand elasticities The front of both cubes vs. 
the backs of both cubes 

Business as usual crude price The bottom of both cubes 
VS. the tops of hoth cubes. 

Discount rate The left cube vs. the right 
cube. 
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Main Effects 
Table of Contracts 

Prob. of 
major oil 
disruption 

Demand BAU Crude 
Elasticities Price 

Obs. Net Econ. Ohs. 
Number Benefit Numbed 

1 3.48 1 
9 7.97 5 

2 
b 10 

3 
11 

14.69 2 
27.01 6 

2.56 3 
12.52 7 

4 15.72 4 
12 43.39 8 

5 18.71 9 
13 67.62 13 

6 50.06 10 
14 169.16 14 

7 17.28 11 
15 113.90 15 

8 49.97 12 
16 275.48 16 

Net Econ. Obs. 
Benefit Number 

3.48 1 
18.71 3 

14.69 2 
50.06 4 

2.56 5 
17.28 7 

15.72 6 
49.97 8 

7.97 9 
67.62 11 

27.01 10 
169.16 12 

12.52 13 
113.90 15 

43.39 14 
275.48 16 

TABLE A-3 

Net Econ. Obs. Net Econ. 
Benefit Number Benefit 

3.48 1 3.48 
2.56 2 14.69 

14.69 3 2.56 
15.72 4 15.72 

18.71 5 la.71 
17.28 6 50.06 

50.06 7 17.28 
49.97 8 49.97 

7.97 9 7.97 
12.52 10 27.01 

27.01 11 12.52 
43.39 12 43.39 

67.62 13 67.62 
113.90 14 169.16 

169.16 15 113.90 
275.48 16 275.48 

Discount Rate 
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A3 2nd-Order Interaction Effects 

Suppose that one is interested in examining the effects of two sets of 
input factors; for example, the probability of a major interruption and 
the discount rate. Then the sixteen runs of the factorial design can 
be grouped into four sets of four runs each. Each run in the group 
would have the same value for the input factors studied, although other 
input factors would vary within each group. Assume that if there is no 
chance for a major oil disruption and the discount rate is 10X, that 
the average value for the output variable being studied is 100. This 
will be the base point. Also assume that the main effects for the 
probability of a major interruption and the discount rate are 25 and 10 
respectively. This means that, on the average, changing from no chance 
of a major interruption to an annual probability of an interuption of 
0.10 will increase the output variable under study by 25. Likewise a 
change in the discount rate from 10% to 2.5%, will on the average, 
increase this same output variable by 10. If the input factors act 
additively, then the average value of the output variable with 0.10 
chance of an interruption and a 2.5% discount rate would be 
100 + 25 + 10 = 135. 

This artificial case is represented by the upper diagram in figure A-2. 
Note that the quantity 

(b + c -a -d)/2 = (110 + 125 -100 -135)/2 = 0 

i.e., there is no interaction. 

Suppose that the input factors do not act additively, and the base 
point of 100 and main effects are the same. Then the resulting 
measurements could be described by the lower diagram in figure A-2. 
The input factors are now said to interact, By convention a measure of 
this interaction is 

(b f c -a -d)/2=(145 + 160 -100 -135)/2 = 35 

This is a second order interaction and is called the probability of a 
major oil interruption X discount rate interaction. 

Like a main effect, a 2nd order interaction is the difference between 
two averages, eight of the sixteen results being included in one 
average and eight in the other. Analogous explanations are easily 
constructed for all other 2nd order interaction effects. 

A4 Higher-Order Interaction Effects and the Standard Error. 

Similar procedures to those above can be given for deriving the third 
and fourth-order interactions. Due to the similarity of response 
functions it is reasonable to assume that higher-ordered interactions 
are negligible and measure differences arising principally from 
experimental error. Thus the mean, of the sum of squares, of these 
interactions give an estimated value for the variance of an effect, 
having five degrees of freedom. The square root of this value is an 
estimate of the standard error. 
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The level of statistical significance chosen for this study was p4.10. 
In order ta select the statistically significant main effects and 
second order interactions multiply the standard error by tl-p/2=2.015. 
Any main effect or interaction with absolute value greater than this 
product is considered statistically significant. 

A5 The Plot of- Effects 

If the output from the model had simply occurred by chance, the 
‘observations would be normally distributed about some fixed mean, and 
the changes in the input factors would not have a real effect on the 
estimate of the net economic benefit. The fifteen effects, main 
effects plus all interactions, could then be ploted on normal 
probability paper as straight line. One may conclude that the effects 
that are not roughly on this straight line, are due to changes in the 
input factors and have a significant effect on the output variable 
being studied. 

A6 The Binary Estimates 

-1 if ia is the value of the i th input factor 
(see table A-l). 

Define Xi= 
1 if ib is the value of the i th input factor 
(see table A-l). 

Let ai be the main effect of the i th input factor 

Let aij be the 2nd order interaction of the i th and j th input 
factors. 

Let I index the set of significant main effects at a fixed level of 
significance p. 

Let IJ index the set of significant 2nd order interactions at the same 
fixed level of significance. The binary 2nd order estimates of the process 
iS 

Y = Y +I (ai/2) Xi + 1 
iEI ij E IJ 

(aij/2) X,Xj 

A7 The Residual Plot 

If the number of significant effects is small compared to the total 
number of residuals then one. can interpert the plot of residuals on normal 
probability paper. If the residual points lie more or less on a straight 
line then one may conclude that the unexplained variation is due to random 
noise and that the identified significant effects explain the process. If 
this does not happen then the proposed hinary estimate does not fully 
capture the underlying process and more work needs to be done. 
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A8 The Continuous Estimate 

If an input factor, is in fact a continuous variable, with an interval or 
ratio scale, then the binary estimate may be transformed to a continuous 
estimate. Let zi be the conrinous input factor such that: 

I 

ia In the a case 
zi = 

ib in the b case 

Note that Xi = (2~~ - ia - ib)/(ib - ia) 

has the following property: 

a, if 2 = ia then Xi = -1 

b, if z = ib then Xi = 1 

To construct the continuous estimate replace Xi in the binary estimate 
with (221 - ia - ib)/(ib - ia). 
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Appendix B 
APPLICATION 

Bl Analysis of the Net Economic Benefit 

The main effects of three of the input factors, the discount rate, the demand 
elasticities and the probability of a major disruption are statistically 
significant at the p 5 .lO level. In addition there are perceptible 2nd order 
interactions between each pair of the input factors which had statistically 
significant main effects. Therefore each pair of these input factors must be 
evaluated jointly. The two way diagram of figure B-l depicts the nature of 
these interactions. 

Assuming a conventional discount rate of 10% the Teisberg Model estimates 
that an increase of the BAU price of crude oil from $52.00 per barrel to $90.00 
per barrel will increase the net economic benefit from $6.63 billion to $54.38 
billion. If -a discount rate of 2.5% is assumed, the identical change in the 
price of crude oil will increase the net economic benefit from $25.20 billion 
to $136.17 billion. 

Given the assumption that their is virtually no chance of a major disruption 
the Teisberg Model estimates that a change of the discount rate from 10.0% to 
2.5% will increase the net economic benefit from $10.51 billion to $32.61 
billion. If the annual probability of major disruption is 0.10 then the 
identical change in the discount rate increase the probability of a major 
disruption from $50.50 billion to $128.76 billion, 

If one assumes that there is virtually no chance of a major disruption the 
Teisberg Model estimates that a change in the BAU price of oil, from $52.00 per 
barrel to $90.00 per barrel will increase the net economic benefit from $9.11 
billion to $34.01 billion. An increase in the annual probability of a major 
interruption to 0.10 causes the Teisberg Model to estimates that a change in 
the price of crude oil from 552.00 per barrel to $90.00 per barrel will 
increase the net economic benefit from $22.72 billion to S156.54 billion. 

Figure B-2 is the normal probability plot of the effects which appear in Table 
B-l and represented by Figure B-l. If the fifteen effects from the model were 
not due to changes of the input factors then the effects are due to some random 
variation which is assumed to he normal. If this is the case the normal 
probability plot of effects should appear more or less as a straight line. 
Figure B-2 suggests that effects 3, 4, II), 1, and possibly 6 and 7 are not on 
the same "straight" line formed by the remaining effects. This plot tends to 
confirm the identification of significant effects by the method outlined in 
paragraph A4. 

4 
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The Teisberg Model 
Average Net Economic Benefit 

Mean 

Main Effects 

1. Discount rate 

2. BAU crude price 

3. Demand elasticities 

4. Probability of a major disruption 

2nd Order Interactions 

5. Discount rate X 
BAU crude price 

6. Discount rate X 
Demand elasticities 

7. Discount rate X 
Probability of a major disruption 

8. BAU crude price X 
Demand elasticities 

9. BAU crude price X 
Probability of a major disruption 

10. Demand elasticities X 
Probability of a major disruption 

3rd'Order Interactions 

11. Discount rate X 
BAU crude price X 
Demand elasticities 

12. Discount rate X 
BAU crude price X 
Probability major disruption 

13. Discount rate X 
Demand elasticties X 
Probability of a major disruption 

14. BAU crude price X 
Demand elasticities X 
Probability of a major disruption 

4th Order Interaction 

15. Discount rate X 
BAU crude price X 
Demand elasticities X 
Probability of a major disruption 

Estimated standard error 

Level of statistical significance at p < 0.10 

Estimate 

50.18* 

21.52 

79.36* 

68.07* 

9.39 

31.61* 

28.08* 

16.25 

21.87 

54.46" 

5.95 

8.57 

21.69 

16.66 

6.10 

13.37 

26.95 

* Significant effects at p < 0.10 
Table B-l 
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B2 The Binary Estimate 

Define: -1 if d = 10.0% 
xd' 

1 if d = 2,5X 

I 

-1 if e = -0.3 
xe= 

1 if e = -0.1 

I 

-1 if p = 0.000 
X’ P 

1 if p = 0.100 

Where d is the discount rate, e is the elasticity of demand, and p is the 
probability of a major oil disruption. 

With the definitions above and the information contained within the analysis of 4 

the net economic benefit (section El.) one can construct the following binary 
estimate: 

Y = 55.59 + (50.18)/2 xd + (79.36)/2 xe + (68.07)/2 xp + 

(31.61)/2 xdXe + (28.08)/2 xdXp + (54.46)/z xexp 

or 

Y = 55.59 + 25.09 xd + 33.68 x, + 34.04 xp + 

15.81 Xdxe + 14.04 xdXp + 26.23 x, XXp 

A normal probability plot of the residuals, figure B-3 can be used to examine 
the adequacy of this estimate of the Teisberg Model. The residuals for this 
estimate, are found in Table 1. If all of the variation is expalained by the 
proposed estimating equation then the normal probability plot of residuals will 
lie more or less on a straight line, Clearly the residual from observation 16 
and most likely observations 14 and 13 do not lie on the “straight” line formed 
by the remaining observations. This suggests that although an improvement in 
the original estimate has been accomplished, more work remains to be done. 
Promising avenues of investigation include transforming the data before the 
application of a factorial design as proposed by Daniel and/or the use of 
response surface analysis. 

4 
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B3 The Continuous Estimate 

To construct the continuous estimate from the binary estimate replace: 

xd with 2d - 0.025-0.1 = 2d - 0.125 
0.025 - 0.1 -0.075 

- 

X, with 2e + 0.1 -t 0.3 = 2e + 0.4 
-0.1 + 0.3 0.2 

Xp with 2p - 0.1 = 2p - 0.1 
0.1 -0 0.1 

to obtain: 

Y = 55.59 + 25.098 ((2d - 0.125)/-.075) 

+ 39.68 ((2e + 0.4))/0.2) + 34.04 ((2pO.l)/O.l) 

-t 15.81 ((2d - 0.125)/-0.75))((2e + 0.4)/2) 

-t 14.04 ((2d - 0.125)/-0.75)((2p-O.l)/O.l) 

+ 26.23 ((2e + 0.4)/0.2>((2p-O.l)/O.l) 

which simplifies to: 

Y = 119.57 - 1,137.87 d + 398.00 e + 2198.00 p 

-4216.00 de - 7488.00 dp + 5246.00 ep 

B4 The Differential Estimate 

If c(w) denotes the change in the variable w, then the estimate of the change 
of the net benefit is: 

c(y) = -1137.87 c(d) + 398.00 c(e) + 2198.00 c(p) 

-4216.00 d c(e) - 4216.00 c(d) e 

-7888.00 d c(p) - 788.00 c(d) p 

+5246.00 e c(p) + 5246.00 c(e) p 

Although-this was developed as a global estimate it can be used for local 
approximations. If the model has been evaluated for a set of input factors 
(d,e,p) and one wishes to estimate the net economic benefit for a point 
(d',e',p ') which is close to (d,e,p) then calculate the c(y), the change in the 
net economic benefit and add that value to the model's estimate for the point 
(d,e,p)= 

4 
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HIGH TO LOW DOSE EXTRAPOLATION OF EXPERIMENTAL ANIMAL CARCINOGENESIS STUDIES 

Charles C. Brown 

National Cancer Institute 

Bethesda, MD 20205 

ABSTRACT 

Quantitative risk assessment requires extrapolation from results of 

experimental assays conducted at high dose levels to predicted effects at 

lower dose levels which correspond to human exposures. The meaning of this 

high to low dose extrapolation within an animal species will be discussed, 

along with its inherent limitations. A number of commonly used rrrathematical 

models of dose-response necessary for this extrapolation, will be discusseci. 

Other limitations in their ability to provide precise quantitative low dose 

risk estimates will also be discussed. These include: the existence of 
l ‘. 

thresholds; incorporation of background, or spontaneous responses; 

modification of the dose-response by pharmacokinetic processes. 
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In recent years , as the serious long-range health hazards of 

environmental carcinogens have become recognized, the need has arisen to 

quantitatively estimate the effects upon humans exposed to low levels of these 

agents. Inherent in this estimation procedure is the necessity to extrapolate 

evidence observed under one set of conditions in one population group or 

biological system to arrive at an estinrate of the effects expected in the 

population of interest under another set of conditions. 

The quantitative assessmnt of human health risk from exposure to 

carcinogenic agents is often approached by relating the exposure level of the 

agent to a measure of the cancer risk as determined from experimental data on 

animals or other biological systems. For the extrapolation of animal study 

results to Mn, much care should be placed in the design and conduct of these 

studies, since many factors may influence their results. These factors 

include the dosage and frequency of exposure, route of administration, 

species, strain, sex and age of the animal, duration of the study, and various 

other modifying factors as deemd important for the particular agent and 

effect being studied. 

Experimental anjmal bioassays to measure the dose-response of the agent 

in question rtust necessarily be based on exposure levels higher than those for 

which the risk estimation is to be made. A limited number of experimental 

animals requires high exposure levels in order to masure a carcinogenic 

effect if it exists. Some consideration has been given to the possibility of 

conducting extremely large experiments at very low dose levels. However, as 

Schneiderman, et al. (L) remark, "purely logistical problems might guarantee 

failure." Therefore, to obtain reliably measureable effects, the experimntal 

information rmst be based on levels of exposure high enough to detect positive 

results. Since large segments of the human populations are often exposed to 

4 

4 
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I much lower levels, these data at high exposure levels rmst be extrapolated to 

lower levels which correspond to human exposure. The purpose of this 

presentation is to describe the current statistical methods used for this 

"high to 1~ dose" extrapolation in experirrental animal species and to 

emphasize the uncertainties necessarily attached to the estimates made with 

these methodologies, 

The high to low dose extrapolation problem is conceptually straight- 

forward. Since the risk at low exposure levels cannot be rnzasured by direct 

experimentation, an assumed mathematical relationship between dose (exposure) 

D and response (risk) mrst be used to extrapolate from the high experimental 

doses to the low environmental levels, The probability of a toxic response is 

modeled by a dose-response function P(D) which represents the probability of a 

carcinogenic response when exposed to D units of,the carcinogenic agent. A 

general nrathematical model is chosen to describe this functional relationship, 

its unknazrn parameters are estimated from the available data, and this 

estimated dose-response function P(D) is then used to either: (i) estimate 

the response rrtzasure at a particular low dose level of interest; or 

(ii) estimate that dose level corresponding to a desired low level of response 

(this dose estimate is commonly knwn as the virtually safe dose, VSD). 

Many mathematical dose-response models have been proposed for this 

problem. The follming section describes the more commonly used models. 

r) 

Mathematical Models of Dose-Response 

To estimate the effects expected outside the range of observable 

experimental data, a matherrratical model relating dose, i.e., level of exposure 

to the toxic agent, to response, i.e., a quantitative measure of the 

deleterious effect produced, is necessary, In general terms, dose-response is 
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the relation between a measureable stimulus, physical, chemical or biological, 

and the response of living matter measured in terrm of the reaction produced 

over some range of the degree or level of the stimulus. 

Tolerance Distribution Models 

When the response is quanta1 (whether or not a specific effect is 

produced), its occurrence for any particular subject will depend upon the 

level of the stimulus. For this subject under constant environmental 

conditions, a common assumption is that there is a certain dose level below 

which the particular subject will not respond in a specified manner, and above 

which the subject will respond with certainty. This level is referred to as 

the subject's tolerance. Because of biological variability among subjects in 

the population, their tolerance levels will also vary. For quanta1 responses, 

it is therefore natural to consider the frequency distribution of tolerances 

over the population studied. If D represents the level of a particular 

stimulus, or dose, then the frequency distribution of tolerances, f(D), may be 

mthematically expressed as 

f(D)=dP(D)/dD, 

which represents the proportion of subjects whose tolerances lie between D and 

D+dD, where dD is small. If all subjects in the population are exposed to a 

dose of D,, then all subjects with tolerances less than or equal to 0, will 

respond, and the proportion, P(D,), this represents of the total population is 
a 

given by 

w4-J) = 
6 

DO 
f(D)dD . 

Assuming that all subjects in the population will respond to a sufficiently 

high dose level, then 
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The funct ion P(D) can be thought of as representing the dose-response either 

for the p opulation as a whole, or for a subject randomly selected from the 

P(m) = d f(D)dD = 1 . 

population. The notion that a tolerance distribution, or dose-response 

function, could be determined solely from consideration of the statistical 

characteristics of a study population was introduced independently by Gaddum 

(2) and Bliss (3). 

The results of toxicity tests have often shcmn that the proportion of 

responders increases monotonically with dose and often exhibits a sigmoid 

relationship with the logarithm of the exposure level. This observation led 

to the developmnt of the log normal, or probit, model for the tolerance 

frequency distribution, 

f(D;p,o) = (2n0~)~~” exp - $-I2 , 0’0 I 
2 u 

while the dose-response function is given by the cumulative normal 

probability, 

W~J,~) = e[(log(D)-d/d . 

where P and a2 represent the mean and variance of the distribution of the log 

tolerances. This method was put into its modern form by Bliss (t), and Finney 

(A) gives a brief history of its development. 

Other mathematical models of tolerance distributions which produce a 

l sigmoid appearance of their corresponding dose-response functions have been 

suggested. The most commonly used is the log logistic function, 

P(D;a,b) = [l+exp(a + b log(D)>]-l, b<O, 

which, like the log normal model is sigmoid and symmtric about the 50% 

response level, but approaches the extremes, 0% and 100% response, more slowly 
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than does the log normal. The logistic function has been derived from 

chemical kinetic theory, and was proposed as a dose-response model by 

Worcester and Wilson (6) and Berkson (7). The log logistic and log normal 

functions are similar in appearance so that discrimination between them is 

nearly impossible. 

Models Derived From Mechanistic Assumptions 

A number of dose-response models have been suggested on the basis of 

assunptions regarding the lnechanism of action of the toxic agent upon its 

target site. The "hit theory" for interaction between radiation particles and 

susceptible biologic targets has generated a general class of these models 

(8). This theory is also applicable to the action of chemical toxicants upon 

their target sites. In general, this theory rests upon a number of 

postulates, which include: (1) the organism has some number M of "critical 

targets" (usually assumed to be infinitely large); (2) the organism responds 

if m or more of these critical targets are "destroyed"; (3) a critical target 

is destroyed if it is "hit" by k or more toxic particles; and (4) the 

probability of a hit in the low dose region is proportional to the dose level 

of the toxic agent, i.e. Prob(hit) = AD, ~0. 

Some commonly used special cases of this general theory are the single- 

hit model, 

P(W) = 1-exp(-AD) , 

where the subject responds if a single critical target 

single hit; and the rmltihit model, 

P(D;X,k) = j 
XD xk-l 

ev(-x)dx , 

D r(k) 

where r(k) denotes the gamma function, and the subject 

is destroyed by a 

responds if a single 
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critical target is destroyed by k hits. For a discussion of the single-hit 

model as applied to the high to.lm dose extrapolation problem, see (9,lO); 

the Report of the Scientific Committee of the Food Safety Council (ll,l2) and 

Rai and Van Ryzin (l3,14) discuss the application of the multihit model for 

dose extrapolation. 

Other mechanistic models have also been derived from quantitative 

theories of carcinogenesis. The multistage carcinogenesis theory (15-17) 

assumes that a single cell can generate a malignant tumor only after it has 

undergone a certain number, k, of heritable changes. This theory leads to the 

rmltistage model, 

P(D; x1, -00, $) = l-exp(-(AltNA2D2+ •**-+x~D~)), ~20 i=l,*-•,k. 

The use of this model for extrapolation purposes has been described by Brown 

(18) and Guess and Crump (19,ZO). 

The rmlticell carcinogenesis theory of Fisher and Holloman (21) leads to 

a dose-response function having extrapolation characteristics similar to the 

mrltihit model, 

P(D;A,k) = 1-exp(-XDk) , X,k>O. 

This model has also been termed the Weibull model and Van Ryzin (22) discusses 

its application to extrapolation problems. 

Discrimination among dose-response models 

Given a postulated functional form of the dose-response relationship, the 

experimental data is used to estimate the unknown parameters. It might be 

thought that the basis for selection of ohe particular model over the others 

would be provided by the observed dose-response. However, this is often not 

the case, as many dose-response models appear similar to one another over the 
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range of observable response rates. Figures 1 and 2 compare the dose-response 

relationships of the more commonly used models; Figure 1 compares the log 

normal, log logistic and single-hit models; Figure 2 compares the multihit, 

Weibull and multistage models. 

In the left panel of Figure 1, the parameters for these models were 

chosen to make the response rates equal at dose levels of 1 and l/4; in the 

left panel of Figure 2, the parameters for the models were chosen to make the 

response rates equal at dose levels of 2 and 0.5. These figures clearly show 

that it would take an inordinately large set of experimental or observational 

data to be able to conclude which of the models provide a significantly better 

fit to an observed dose-response. 

If the estimated dose-response is to be used to predict the response rate 

that would be expected from an exposure level within the range of observable 

rates, then the models within each of the two sets compared will give similar 

results. However, extrapolation to exposure levels expected to give very low 

the choice of model, as shown in the response rates is highly dependent upon 

right panels of Figures 1 and 2, These 

the left panels to much lower dose leve 

figures extend the dose-response in 

1s. The further one extrapolates from 

the observable response range, the more divergent the models become. At a 

dose level which is l/l000 of the dose giving a 50% response, the single-hit 

model gives an estimated response rate 200 times that of the lognormal model, 

and the multistage model gives an estimated response rate over 210 times that 

of the multihit model. 

krewski and Van Ryzin (23) examined the extrapolation characteristics of 

these six commonly used dose-response models. They applied these models to 20 

a 

sets of toxic response data that were taken from the Report of the kientific 

Committee of the Food Safety Council (11,12). The toxic responses were both 
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carcinogenic and noncarcinogenic in nature. Of the 19 data sets showing an 

convex (i.e. upward curvature) dose-response, all estimtes of the virtually 

safe dose (VSD) at a response rate of P = 10ms or smaller had the ordering, 

single-hit ( multistage C (Weibull, log logistic, multihit) < log normal. 

That is, the Weibull, log logistic, and rmltihit produce VSD's of 

approximately the same order of magnitude, the single-hit model produces the 

smallest VSD, and the log normal model the largest VSD. In addition, the 

difference between the extremes, the single-hit and log normal models, is 

often several orders of magnitude. 

Table 1 and Figure 3 give an example of this behavior for these models 

applied to the incidence of liver hepatomas in mice exposed to various levels 

of DDT (24). Table I shms that each of the six dose-response models fit the 

observed data nearly equally well (the mltistage model fits the data as well 

as the others). Therefore, the data in the observable'response range (for 

this study, between 2 and 250 ppm DDT in the daily diet) cannot discriminate 

among these models. Based on the goodness-of-fit statistics, the Weibull 

model fits the best (P = 0.22), but not significantly better than any of the 

other models. However, there is a significant difference among the VSD 

estimated from these models; the log norm1 model estimates a VSD over 3000 

l 

times as large as the single-hit model. Therefore, these experimental data 

leave the true VSD open to wide speculation. 

The fact that an experimental study conducted at exposure levels high 

enough to give measureable response rates cannot clearly discriminate among 

these various models, along with the fact that those models sharr substantial 

divergence at 1~ exposure levels present one of the major difficulties for 

the problem of low dose extrapolation. Since the rmltistage model has the 

extrapolation characteristics of most other models, Brown (25) has suggested 
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its use to provide estimates of both sampling and model variability for this 

1~ dose extrapolation problem. 

Adjustments for Natural Responsiveness 

The mathematical dose-response models described in the preceding sections 

have assumed responses of the subjects to be due solely to the applied 

stimuli. However, many toxicity experiments and observational studies shcrw 

clear evidence that responses can occur even at a zero dose. Thus, any 

mathematical dose-response function should properly allow for this natural, or 

'background', responsiveness. 

Two methods have been proposed to incorporate the possibility of response 

due to factors other than the stimulus in question. The first is commonly 

which is based on the assumption of an 

stimulus and the background (26). If the 

knwn as 'Abbott's correction' 

independent action between the 

probability of response in the 

the overal 1 response probabil 

actions, becomes 

P(D) 

absence of any stimulus is denoted by P,, then 

ity at dose level D, assuming independent 

= P, + (l-P,)P*(D) , 

where P*(D) represents the dose-induced probability of response. The second 

method assumes that the dose acts in an additive mnner with the background 

environment, producing the overall dose-response model (27) 

P(D) = P*(D+D,) , 

where Do represents some unknown background level of the stimulus (or other 

stimuli that produce the response in a mechanistically dose-additive rranner). 

It is often difficult to discriminate between the independent and 

additivity assur?ption on the basis of dose-response data. Figure 4 corrpares 

the theoretical dose-response relationships of these two assumptions where 

,: . 
3.'& 
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P*(D) is a log logistic model. The parameters of these models were chosen to 

l 

minimize their difference. Clearly, a large set of data would be required to 

determine the proper manner to incorporate background response. To describe 

the dose-response in this observable response range, this figure shows that 

this assumption is not an important issue, as both will describe equally data 

in the observable response range. However, for purposes of low-dose 

extrapolation, this assumption can have irrportant consequences. Crump, et al. 

(17) have shown mathematically, that no matter what dose-response model, 

P*(D), is used,'the additivity assumption will lead to a linear dose-response 

in the low dose region. This will not be true for the independent action 

assumption. Hoe1 (28) compares low dose risk extrapolations based on the two 

assurrptions applied to a log normal dose-response model. His results are 

given in Table II. This table clearly shms the low-dose linearity of the 

additive assurrption , and the substantial difference between the additive and 

independence assumptions at low dose levels. Hoe1 also examined models which 

incorporate a mixture of independent and additive background response, and 

found that low dose linearity prevails except when the background mechanism is 

totally independent of the dose-induced mechani:sm. 

Pharmcokinetic Models 

Pharmacokinetic hypotheses concerning toxicity from foreign chemicals 

state that biological effects are manifestations of biochemical interactions 

between the foreign substances (or substances derived from them) and 

components of the body. A critical problem in the application of 

-pharmacokinetic principles to risk extrapolation is the potential change in 

mtabolism or other biochemical reactions as external exposure levels of the 

toxic agent decrease. Linear pharmacokinetic models are often used. However, 
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_ there are numerous examples of nonlinear behavior in the dose range studied, 

and these nonlinear kinetics pose significant problems for quantitative 

extrapolation from "high" to "low" doses if the kinetic parameters are not 

measured (29-31). 

As shun in Figure 5, linear kinetics assume that the reaction rate per 

unit time of a chemical reaction is proportional to the concentration C of the 

substance being acted upon ; whereas nonlinear kinetics are most often 

described in the form of a Michaelis-Menten expression, often referred to as 

"saturable" kinetics. If all processes are linear, then the concentration 

rate of the toxic substance at its site of action ('effective dose') will be 

proportional to the external exposure rate ('administered dose'). However, 

saturation phenomena may produce different results depending upon the 

processes affected; if elimination and/or detoxification pathways are 

saturable, then the effective dose will increase more rapidly with the 

administered dose than linear kinetics would suggest; if the distribution 

and/or activation pathways are saturable, then the effective dose will 

increase less rapidly with the administered dose, 

Gehring and Blau (32) and Gehring, et a1:(33) discuss pharmcokinetic 

models with respect to extrapolation of carcinogenic risk from high to low 

doses. As an example, Gehring et al. (29) applied pharmacokinetic principles 

to the dose-response of hepatic angiosarcomas in rats exposed to different 

concentrations of atmospheric vinyl chloride over a period of I2 months. The 

results of their study are shcmn in Figure 6. Since the metabolic activation 

of vinyl chloride appears to be a saturable process, the observed relationship 

between response, as measured by the proportion of rats with hepatic 

angiosarcomas, and dose, as measured by the external atmospheric exposure 

level of vinyl chloride, is clearly nonlinear, shming a leveling out at the 

a 

340 



highest exposure levels which cannot be explained by a number of the 

previously discussed dose-response models (e.g. log normal and multistage). 

However, if dose is measured in terms of the amount of vinyl chloride 

metabolized, then the dose-response becomes mrch more linear, and most models 

provide an adequate fit to the data. 

Summary and Conclusions 

The preceeding sections have discussed the general problem of high dose 

to low dose extrapolation. The purpose of this extrapolation is to estimate 

the effects of low level expqsure to carcinogenic agents known to be 

associated with undesired effects at high dose levels. 

Mathematical models of dose-response are necessary for this extrapolation 

process since the low dose effects, expected to be on the order of response 

rates of 10W6, are too small to be accurately measured with limited study 

sample sizes. A number of mathematical dose-response models have been 

proposed for extrapolation purposes ; we previously saw how similar they can 

appear to one another in the range of observable response rates, yet how 

different they become at lower, unobservable response rates, the region of 

primary interest. This is the single, most irrportant limitation of this 

extrapolation methodology. An estimate of risk at a particular low dose, or 

an estimte of the dose leading to a prespecific level of risk is highly 

dependent upon the mathematical form of the presumed dose-response; we have 

seen that differences of 3 - 4 orders of magnitude are not uncommon. 

Pharmacokinetic information on the fate of a toxic agent once it enters 

the body is beginning to be incorporated into the high to low dose 

extrapolation process. Nonlinear kinetics may be an important determinant of 

the nonlinear dose-response relationships often observed in experimental 
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studies of toxic agents. As noted in previously, Gehriny et al (29) have 

shown that the metabolism of inhaled vinyl'chloride is a saturable process 

that provides one explanation of the concave liver carcinogenesis dose- 

response observed in animal studies. In a study of urethane-induced pulmonary 

adenomas shown in Figure 7, bite (30) found that the convex relationship 

between the amount of urethane injected into a mouse lung and the number of 

subsequent lung adenomas could be explained by nonlinear kinetics of 

excretion. Such pharmacokinetic models and dose-response studies of the 

kinetics of physiological processes might considerab y strengthen the ability 

to extrapolate from hiyh to low dose levels. 

llther sources of uncertainty in high to low dose extrapolation include: 

(1) the possible existence of thresholds; (2) heterogeneity of sensitivity to 

the toxic agent among ,members of the exposed population; and (3) mechanisms of 

action for carcinogens (i.e. whether thz ayent initiates the process or acts 

at a later stage). The existence of a single threshold for the entire exposej. 

population should allow for estimation of a clearly safe level of exposure. 

However, its estimation could be associated with a high degree of uncertainty. 

Heterogeneity in individual thresholds and sensitivity to the toxic agent 

induces additional uncertainty in high to low dose extrapolations. The 

theoretical relationship of dose rate and duration of exposure to cancer risk 

indicates that similar exposure patterns (i.e. same dose rate and duration) 

will not necessarily lead to similar levels of risk since the age atexposure 

may also be an important determinant of risk. Thus, uncertainty in the 

mechanism of toxic action induces another potentially large uncertainty into 

risk extrapolations. 

Therefore, all these sources of uncertainty, (1) dose-response model, 

(2) pharmacokinetic behavior of the toxic agent, (3) thresholds, 

(4) heterogeneity, and (5) lnechanisms of action, lead to potentially enormous 

variation in estimates of risk from high to low dose extrapolations. 

a 
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Table I: Comparison of Virtually Safe Doses (VSD) 

Leading to an Excess Risk of 10m6 

for Various Dose-Response Extrapolation Models 

models applied to data from (24) 

Goodness-of-fit Statistic 

Extrapolation VSD" of Model to Observed Data 

Model (ppm DDT in daily diet) x2 (d.f.) P-value 

Log normal 

Weibull 

Multihit 

Log logistic 

Multistage 
Single-hit 

6.8 x 10-l 3.93 (2) 0.14 

5.0 x 10-Z 3.01 (2) 0.22 

1.3 x 10-Z 3.31 (2) 0.19 
6.6 x 10-S 3.45 (2) 0.18 

2.5 x 10-b m--m--* ** 

2.1 x 10-k 5.10 (3) 0.16 

* 97.5% lower confidence limit on VSD 

** no goodness-of-fit statistic since the number of parameters 

equals the number of data points 

346 



Table II: Excess Risk P(D)-P(0) for Log Normal Dose Response 

Model Assuming Independent and Additive Backgr.ound 

Dose (D) 

Type of Background 

Independent Additive 

100 4.0 x 10-l 4.0 x 10-l 

10-l 1.5 x 10-Z 5.2 x 10-2 
10’2 1.6 x 10-S 5.2 x 10-S 

10-S 3.8 x lo-10 5.1 x 10-4 
10-b 1.8 x lo-16 5.1 x 10-S 

*w * 0.1; log normal model slope = 2 from (28) 

347 



0.9 

0.8 

0.3 

0.2 

a.1 

OBSERVABLE UNOBSERVF?BLE 
,RESPONSE RfWE ‘RESPONSE RANGE 

1C 

FIGURE 1: Comparison of log-normal, 1 og-logi stic and single-hit dose response 

model s 

a 



ILI 

x 
u 

31&l 3SNOdS3tl 

\ \ 
\ 

\ ‘\ \ \ .\ 

0 
” 

349 



FZGUtiE 3: Comparison of high to low dose extrapolations from 6 dose-response 

models Ldata from Tomatis et al. (24)] 
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